
Xerox Control Progralll-Fivt (CP-VJ
Xerox 660 and Sigma.Sl6/7/9 Computers

System Pro&ramming

() 1974, 1976. 1976. Xerox Corporetlon

~1978, Honey~ell Informatlon Systems Inc.

.~~ " .
,;

Reference MBlai

90 31 138
90: '~:1 138-1

'. 9Q .:31 :138-2

September 1978

XEROX

FileNo.: 1X13
XQ63B, Rev. 0

90 31 13B-1(9nS)

ii

REVISION,

This'pubHcotion documents the FOO version of Contra" P~o9rom-Five (C,P';'Y) .• ThepubHcotion consists of the B edition
of this manual (90 31 13B, dated November 1975) aOOt.he revision pad:agesnumbered 90 31 138-1 (11/76) and
90 '31 13B-2(9/78). Vertical lines in the margim of pages lObel~ 90 31., J3B-2(9/78) indi.cate changes that reflect
the FOO'version of CP-V. Vertical lines in the margins of other poge~ incHt~:Jte changes that occurred in a previous
rJIec;se of the system. . '

RELATED PUBLICATIONS

Xerox Contro I Program-Five (C P-V)/TS Reference Manual .

Xerox, Control Program-Five (CP-V)/TS User's Guide
",

Xerox Control Program-Five (CP-V}/OPS Reference Manual
• 'I ~ .~~.

Xero~ Control Program-Five (CP-V)/BP R~ference Manual

Xerox Control Program-Five (CP-V)/TP Reference Manual
..~ . i ;: •. y"

Xerox .~ontrol Program-Five (CP-V)/RP Reference Manual.
.,;

Xerox Control Program-Five (CP-V)/SM Reference Manual

Xerox Control Program-Five (CP-V}/Common Index
/J~:

Xerox EASY/tN, OPS Reference Manual
}<. 'IIi (

Xerox BASIC/Reference Manual
.;)

Xerox Extended FORTRAN IV /tN Reference Manual
('

Xerox ~~tended FORTRAN IV/OPS Reference Manual

Publication No.

900907

90 1692

90 1675

90 1764

9031 12

903026

90 1674

903080

90 1873

90 1546

90 09 56

901143

90 31 138-2(9/78

Title

Xerox Extended FORTRAN tV/Libra~.yTechnlcal Manual

,Xerox FORTRAN Debug Package {FDP)/Reference ManuaJ

Xerox FLAG/Reference Manual

Xerox Meta-Symbol/LN, OPS Reference Manual

Xerox ANS cOBOl/LN Reference Manual

Xerox ANS COBOl/OPS Reference Manual

Xerox ANS COBOl/ON-line ,Debugger Reference Manual

Xerox Manage/Reference Manual

Xerox APl/LN, OPS Reference Manual

Xerox Sort-Merge/Reference Manual

Xerox 1400 Series Simulator/Reference Manual

Xerox Sigma 5/7 Mathematical Routines/Technical Manual

Xerox General Purpose Disc'rete Simulator (GPDS)/Reference Manual

Xerox Data Management System (OMS)/Reference Manual

Xerox SL-l/Reference Manual

Xerox CIRC-DC/Reference Manual and User's Guide

Xerox CIRC-AC/Reference Manual' and User's Guide

Xerox CIRC-TR/Reference Manual and User's Guide

Publica.tion No •.
,.~ .'

90 l5 2.(
f.

9~1:16 n~

90 1654;"'

900952

90 1500

90 1501

90 30 60

90 16 10

90 1931

901199

. 90 1502

90 0906

90 17 58

90 1738

90 1676

90 16 CJ7

90 1698

90 1786

Manual Content Codes: SP - botch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, SP - system programming, TP - transaction
processing, TS - time-sharIng, UT - utillti_.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features ,.
may depend on a specific configuration of equipment such as additional tope units or lorger memory. Customers should consult the-ir sales representative for '
details.

90 31 13B-2(9/78)
iii

CONTENTS

PREFACE ix Comment Cards 37
Patch Fi Ie Creation 37

Sequence of Operations 37
COMMAND SYNTAX NOTATION x Booting From Pisk 40

Bootstrap I/O' Error hwvery 40
PAS SO Processor 41

GLOSSARY xi PASSO Messages 41

1. INTRODUCTION 4. MONITOR DUMP ANALYSIS PROGRAM 42

CP-V Services 1 Introduction 42
Time-Sharing and Batch Processing 1 Ghost Mode 42
Remote Processing 2 Batch and On~Une Modes 42
Transaction Processing 2 Commands 42
Rea1-Time Processing 2 Input Command 43

System Programming Facilities 2 INPUT 43
Display Commands 43

DISPLAY 43

2. SYSTEM OVE RVIEW 3 RUN 43
ALL 43

Introduction 3 Interactive Monitor Display Commands 43

Processors 3 loc 43
46

Command Processors 3 loClt 'oC2
46

System Management Processors 4 LINE FEED
46 t language Processors ___ 5

* 46
Execution Control Processors 9 46
Service Processors 10 MONITOR

Appli co ti on Processors 11 loc = value 46
Map Commands 46

User Processors 13.
N,onitor 13 MAP 46

46
Schedul ing and Memory Management 14 UNMAP

46 Search Commands Scheduler Operation 16
COMPARE 46

System Integri ty 20
SMASK 47
SEARCH 47

Output Commands 47
3. BOOTSTRAP AND PATCHING OPERATIONS 24 ROWS 47

LP 47
System Tape Format 24 UC 47
Potch Deck Structure 24 PRINT 47

Delta Format Patches 24 Debug Commands 47
Patch Deck Symbol Tables 26 BF 47
Reconfiguration and Partitioning DELTA 47

Commands 27 NODELTA 47
:GO 27 Misce Ilaneous Commands 48
:SAVE 28 SYMBOLS 48
:TYPE 28 IS 48
:REMOVE 28 SYMBOl/ 48
:PART 29 DUMP 48
:END 29 CLOSE 48

:GEN DCB Command 34 HELP 48
GENMD Commands 34 Spy Command 48

GENMD 34 SPY 48
LIST 34 Ex; t Command 49
DELETE 34 END 49

GENMD Patches 35 Output 49
GENMD Error t .. -\essages 35 ANLZ Messages 58
Conditional Potch Control Commands 35 ANLZ Command Summary 58

tv

5. ERROR MESSAGE filE 63 Shored Proc&uor Iv\ointenance (DRSP) 106
DRSP Commands 106

Introduction' 63 ENTER' 106
Format of Error Message fi Ie 63 REPlACE 109
Creoti ng Error Message Fi Ie 63 DELETE 109 "

Card Reader Input 63 ' liST 109
Terminal Input M lISTALL 109

? 110

6. SYSTEM ERROR LOG FilE 65 END 110
DRSP limitat,fons and Restrictions 110

Introduction 65 DRSP ErrOr Messa'ges 110
ERR:flll Program 65 DRSP Command Summary 110
Error log listing Processor -65

Storti ng Execution 65
Input/Output Assignments -____ 65 s. ON-LINE PERIPHERAL DIAGNOSTIC

SET 65 FACILITIES 114
Input/Output Characteristics 67 '-
Interrupting ELLA Execution 68 Introduction 114'
ELLA Commands 68 Restricttons 114 ... ·

CliS 68 PSECT Dtrectlve 114
SliS 77 System Procedures 115
SUM 81 Create Diagnostic Data Control Block 115
OISP 81 M:DDCB 115
END 82 Open Diagnostic Data Control Block 116
RSET 82 M:DOPEN 116
TIME 83 Close Diagnostic Data Control Block 117
TYPE IW M:DCLOSE 117
DEV IW Build Command list 117
MOD IW M:8LIST 117
DSPL 87 Start 1/0 119
MOS 88 M:SIO 119

Predefined Tasks 88.1 Lock In Core 119
ELLA Messages 90 M:LOCK 119
ELLA Command Summary 90 Convert Address 120

Hardware-Error Diognostic CAu 91 M:MAP 120
Reod Error Log 92 'ObtoinModel Numbers and Type Mnemonics_ 120
Write Error Log 92 M:DMOO' 120
Initiate Ghost Job 92 M:OMODX 120

SHARED PROCESSOR FACILITIES 93
Abnorma I Code, and M6uagel 120.1

7. ODCB 120.1
Introduction 93

Public Progroms 93 9. REAL -TiME PROCEDURES 126
Processor Privileges 93
Shared Programs 93 Interrupt Connection and Control Services ___ 126
log-On Connection 94 Connect Interrupt to Ghost File 127

Shored Processor Programming 94 M:GJOBCON 127
Fixed Monitor Locations 94 Connect User Prog ram to Interrupt 127
Job Information Table (JIT) 95 M:CONNECT 127

I Memory Size Restrictions 96 Disconnect User Program or Ghost Job
Memory ,Control 96 from Interrupt 128
OVerlay Restri ctions 96 M:OISCONNECT 128
Data Control Blocks 96 Control on Interrupt 129
File Identification 98 M:INTCON 129
TEL Scan 98 General Interrupt Inhtbit 129
cel Scan 99 M:INHIBJT 129
Terminal I/O 99 Return from Interrupt Processing 130
Fi Ie Extensi on 101 M:INTRTN 130
Shared File Use 101 Queue for Interrupt 130

Command Processor Programming 101 M:QFl 130
Public Libraries 104 ObtaIn Interrupt StatuI 131

CP-V Public libraries 104 M:INTSTAT _ 131
Creating Public libraries 104 Lock In Core Sorvice 131
Loading Public libraries 106 M:HOlD 131

90 31 138-2{9;78) v

C lock Service - ------------- ----________ ~ _____ . __ 132 Queue GET Request __ -_. 151
t"'l\'~C l 0 C K __ . ________ ~_' , -____ 132' Queue STATS Request 151

Dev i c.eNe"emption Servi ces 132.1 Queue .PURGE Request 151
Preempt Device ___________ 132.1 Queve LOCK Request 152

tv'l:STOPIO _______ 132.1 Ust Forman 152
Return Preempted Device 134 DEFINELIST or STATS Ust 152

M:STARTJO 134 GET Message 152
Direct I/O Services ____ 134 PUT list 152

IOEX Services 134 M:QUE,uE Proced\lre Output Parameters 153
M:IOEX (510) 134 -SRz~> I nfdrmation 153
M:IOEX (HIO/TIO/TDV) ! ,136 EeB Information 153

Execute Privilegedlnstrv~~iop' Service 136 Queue Error Codes 153
M:EXU 13{>

Enter Master Mode 136 INDEX 225
M:MASTER _ 136

Enter Slave Mode 136
M:SLAVE 136

PSECT Directive 137
Virtual/Physical Address Conversion 137

M:MAP 137 APPENDIXES
Miscellaneous Real-Time Services 137

Get or Free Physical Page 137 A. OPERATIONAL LABELS 155
M:GPP 137
M:FPP __ 137 B. PHYSICAL DEVICE NAMES 156

Initiate Ghost Job 137
M:GJOB 137 C. CP-V SOFTWARE CHECK CODES 157

Get and Release Disk Granule 138
M:GDG 138 D. XEROX 560 REMOTE ASSIST STATION 175
M:RDG 138

Report User Event 138 Introduction 175
M:RUE 138 Hardware Interface 175

Check Interrupt Status 139 Software Interface 175
M:CHKINT 139 Processor Restrictions 175

I/o Services 139 Communications Restrictions 175
M:EXCP 140
M:NEWQ 140 E. ERRFILE Formats 178
M:QUE 142
M:COC 143 F. XEROX ~TANDARD OBJECT LANGUAGE 197

Dynamic Physical Page Allocation for
Real- Time Processing 143 Introduction 197

Introduction 143 General 197
SYSGEN Considerations 143 Source Code Translation 197
Initial ization 144 ObJect language Format 198
The Physical Page Stealer Ghost Job (PPS) __ 144 Record Contro I Information 198

DISPLAY 145 load Items 199
GET 145 Declarations 199
FREE 145 Definitions 201
DYNRESDF 146 Expression Evaluation 202
RESDF 146 Formation of Internal Symbol Tables 205
END 147 Loading 206

Monitor DEFs 147 Miscellaneous load Items 207
RESDF Memory CAL 147 Oblect Module Example 207

G. XEROX STANDARD COMPRESSED

10. TRANSACTION PROCESSING FACILITIES 148 LANGUAGE 213

H. XEROX STANDARD SYMBOLS, CODES
System Queue Manager 148 AND CORRESPONDENCES 214

M:GETJD Procedure Format -+ 149 Xerox Standard Symbols and Codes 214
M:QUEUE Procedure Format 149 Xerox Standard Character Sets 214
M:QUEUE Function Parameter Tables (FPTS) __ 150 Control Codes 214

Queue UNLOCK Request 150 Special Code Properties 214
Queue DEFINElIST Request 150
Queue PUT Request 151 I. SPilL-FILL FEATURE 224

vi 90 31 13B-2(9178)

'fiG~RES 9. DI.SPLA Y Command O,)tions 4-4 ,~.

1. C P-V OperatIng: System 3 10. RUN Comrnalld- Opr i oos _ 45

11. Spy Output ___ 48
2. Typical User Program - Vir!Val Mem~!y loyput

12. Dtsplays 49
(not to scale) 21

13. Trap and Interrupt locotionsforXPSD Instructions_ 52
3. Typical Memory Layout for Sigma Computen

(not to scafe) . . -, ·2t: '14. User Tobie Headings 52

4. Typical Memory Layout fo~ the Xerox 560 - 15.: :-Additio~ar User Table Heodin~s 53
(not to scale) 22- - .

16. Resour~e Wait Queues 53
5. Format of Master System Tope 25

17. Swap Table Terms 53
6. Segment Patching Order 26

18. Partition Table Headings 53
7. Device Resource Configuration from SYSGEN __ 30

19. Processor Table Headings 54
8. Reconfiguration and Partitioning Commands

that were Ignored 30 20. ALLOCAT Headings 54

9. Reconfiguration and Parti tioning Commands 21. I/O Table Headings 55
that were Used 31

22. Device Control Table Headings 55
10. Device Resource Configuration for the Booted

System 31 23. JOQ Table Headings 56

11. Special Processors - Virtual Memory 94 24. COC LIne Table Headings 56

12. Locations Common to all Moni tors 94 25. AVR Table Headings 57

13. Public Library Creation Process 105 26. Symbiont Table Headings 57

14. Generalized Library Load Process (~lnk) 107 27. TSTACK Headings 57

15. Generalized library Load Process (Load) 108 28. ANLZ Messages 58

16. Format of the DOCB 122 29. ANLZ Command Summary 59

17. I/o Operation Codes for Device Handler 30. ELLA On-line I/O Functions 67
(M:QUE) 142

. , .. 31. ELLA Batch I/O Functions 67

32. ELLA Ghost I/O Functions 68

TABLES 33. Error Log Entry Headi ngs 70

1. Eve~t Inputs Received by Scheduler 15 34. RB:FLAGS Structure 75

35. Error Log En try Types n
2. Servtce Request Input to Monitor 16

36 ELLA Messages 90

3. Scheduler Status Queues 17 37. ELtA Command Summary 91

4. Swap-In and Swap-Out Queli~·. 18 38. PartIal Contents of JIT 95

5. Reconfiguration and Partitioning Messages 32 39. Standard DeBs 97

6. GENMD Error Messages 36 40. Routines In :L1B LIbrary File 105

7. PASSO Messages 41 41. DRS P Error Messages 111

8. INPUT Command Options 43 42. ORSP Information Messages 113

9031 138-1(11;76) vii

"43. DRSP Command Summary _____ -,--_ 113 H-3. CP-V Symbol-Code Correspondences ____ 217

44. On-Line Diagnostics Abnormal Messc;ages ___ 121 H-4. ANSell Control-Choracter Translation
Table

_________________ 221

45. Register Settings for End-Action Routines _"_ 135

46. M:QUEUE Error Sub codes _______ _ 153

A-t. ·Standard Operational Labels and Default
. DevicoAssignments ________ 155 EXAMPLES

A-2. Botch Assignment of Operational labels ___ 155 1 • Batch Operation of ELLA ________ 66

A-3. On-line Assignment of Operational labels __ 155 2. On-line Operation of ELLA ________ 66

B-1. Standard I/O Device Type Codes _____ 156 3. Use of the CLIS Command ________ 69

8-2. Sigma lOP Designation Codes _______ 156 4. Use of the SLIS Command ________ 79

8-3. Xerox 560 Cluster/Unit Matrix ______ 156 5. Use of the SUM Command ________ 81

B-4. Device Designation Codes ________ 156 6. Use of DISP Command _________ 82

C-1. CP-V Software Check Codes 157 7. TIME Command Usoge _________ 83

0-1. ASCII to EBCDIC Tronslate Table 176
8. Use of the MOD, DEV, and TYPE Commands __ 85

E-1. Error Record Terminology ________ 178

\ . 9. Use of the MOD, DEV, and TYPE Commands __ 85
E-2. Xerox 7670 RBT -:RP1, RP3 and RP4 ____ 189

10~ Use of the MOD, DEV, and TYPE Commands __ 86
E-3. Xerox 7670 RBT - RP2 _________ 190

11. Use of the MOD, DEV, and TYPE Commol1d$ __ 86
E-4. IBM 2780 RBT - RP1 and RP4 ______ 190

12. Use of the MOD, DEV, and TYPE Commands __ 87
E-S. IBM 2780 RBT - RP2 and RP3 ___ --:~-19O

13. Parameter·Display 88

E-6. IRBT - RP1 and RP4 _________ 191 13.1 MOS Summary Display 88

E-7. IRST - RP2 and RPJ _________ 192 14. listing the Entire Error Fi Ie 88. 1

15. listing Errors for the C~rrent Day __ 89
H-l. C P-V 8-Bit Computer Codes (EBCDIC) 215

16. listing Start-Ups, Configuration, and
H-2. CP-V 7-Bit Communication Codes (ANSCII)_216 Device Partitioning Activity ______ 89

viii
90 31 138-2(9/78)

PREFACE

This manual describes the C p_\i features that are designed to aid the system programmer in the development,
maintenance, and modi fication :.:If the CP-V system.

Manuals describing other features of CP-V are outlined below:

• The CP~V System Management Reference Manual, 90 1674, is the prindpal source of reference informa­
tion for the system manag~ment features of CP-V. It defines the rules for generating a CP-V systel11
(SYSGEN), authorizing users, maintaining user accounting records, maintaining the fi Ie system, monitor­
ing system performance, and other related functions.

• The CP-V Batch Reference Manual, 90 17 64, is the principal source of.reference information for the batch
processi ng features of C P-V (i. e., job control commands, system procedures, V 0 procedures, program
loading and execution, debugging aids, and service processors).

• The CP-V Time-Sharing Reference Manual, 90 09 07, is the principal source of information for the time­
sharing features of CP-V. It defines the rules for using the Termina1 Executive Language and other
terminal processors.

• The CP-V Time-Sharing User's Guide, 90 16 92, describes how to use the various time-sharing features.
It presents an introductory subset of the features in a format that allows the user to learn the material by
using the features at a terminal as he reads through the document.

• The CP-V Remote Processing Reference Manual, 90 30 26, is the principal source of information about the
remote processing features of C P-V. All information about remote processing for all computer personnel
(remote and local users, system managers, remote site operators, and central site operators) is included in
the manual.

• The CP-V Transaction Processing Reference Manual, 9031 12, provides information about dynamically
modifying and querying a central database in a transaction processing environment. The manual is addressed
to system managers, database administrators, applications programmers, and computer operators.

• The CP-V Operations Reference Manual, 90 1675, is the principal source of reference information for
CP-V computer operators. It defines the rules for operator communication (i. e., key-ins and messages),
system start-up and initialization, job and system control, peripheral device handling, recovery and file
preservati on.

• The CP-V Common Index (9030 80) is an index to all of the above CP-V manuals.

Information for the language and app'lication processors that operate under CP-V is also described in separate man­
uals. These manuals are listed on the Related Publications page of this manual.

ix

x

CO&1MAND SYNTAX NOTATION

Notation conventions used in command specifiCations and ex~mples .throughout this manual are listed below.

Notation

lowercase letters

CAPITAL LETTERS

[]

{ }

Numbers and
special characters

Subscripts

Superscr i pts

Underscore

Description

Lowercase letters identify an element that must be replaced with a
'user-selected value.

CRndd could be entered as CRA03.

Capital letters must be entered as shown for input, and will be printed as
shown in output.

DPndd means "enter DP followed by the values for ndd".

An element inside brackets is optional. Several elements placed one under
the other inside a pair of brackets means that the user may select anyone or
none of those elements.

[KEYM] means the term IIKEYM II may be entered.

Elements placed one under the other inside a pair of braces identify a re­
quired choice.

{ ~} means that either the letter A or the value of id must be entered.

The horizontal ellipsis indi cates that a previous bracketed element may be
repeated, or that elements have been omitted.

name~nameJ... means that one or more name values may be
entered, with a comma inserted between each name value.

The vertical ellipsis indicates that commands or instructions have been
omitted.

MASK2 DATA,2 X'lEFI

BYTE DATA,3 BA(L(59))

means that there are one or more state­
ments omitted between the two DATA
directives.

Numbers that appear on the line (i. e., not subscripts), special symbols, and
punctuation marks other than dotted lines, brackets, braces, and underlines
appear as shown in output messages and must be entered as shown when input.

'(value) means that the proper value must be entered enclosed in
parentheses; e. g., (234).

Subscripts indicate a first, second, etc. , representation of a parameter that
has a different value for each occurrence.

sysidl, sysid2,sysid3 means that three successive values for sysid
should be entered, separated by commas.

Superscripts indicate shift keys to be used in combination with terminal keys.
c is control shift, and s is case shift.

l cs means press the control and case shift (CONTROL and SHIFT) and
the l key.

All term ina I output is underscored; term ina I input is not.

I RUN means that the exclamation point was sent to the term inal, but
RUN was typed by the terminal user.

These symbols indicate that an ESC (E9), carriage return (8), or line feed
(@) character has been sent.

IEDIT e means that, after typing EDIT, a carriage return character
has been sent.

GLOSSARY

ANS tape a tape that has labels written in American
National Standard (ANS) for~at.

botch iob a job that is submitted to the botch job stream
through the central site card reader, throughgn on:-line
terminal (using the Batch processor), or through a re­
mote termi na I.

binary input input from the device to which',.the BI
(binary input) operational label is assigned.

concatenation a process whereby a number of files with
the same filename and format are treated as one logical
file. Concatenation is only applicable to ANS tapes.

conflicting reference a reference to a symbolic name
that has more than one definition.

control command any control message other than a key-in.
A control command may be input via any device
to which the system command input function has been
assigned (normally a card reader).

control message any message received by the monitor
that is either a control command or a control key-in.

cooperative a monitor routine that transfers information
between a user's program and disk storage (also see
IIsymbiont II).

data control block (DeB) a table in the user's program
that contains the information used by the monitor in
the performance of an I/O operation.

external reference a reference to a declare~ symbolic
name that is not defined within the object module in
which the reference occurs. An external reference
can be satisfied only if the referenced name is de­
fined by an external load item in another object
module.

.' file extension a convention that is used when certain
system output DCBs are opened. Use of this conven­
tion causes the file (on RAD, tape, disk pack, etc.)
connected to the DCB to be positioned to a point just
following the last record in the file. When additional
output is prc;>duced t,hrough the DC B, it is added to the
previous contents of the file, thereby extending the
file.

function parameter table (FPT) a table through which a
user's program communicates with a monitor function
(such as an I/o function).

ghost job a job that is neither a batch nor an on-line
program. It is initiated and logged on by the monitor,
the operator, or another job and consists of a single
job step. When the ghost program exits, the ghost is
logged off.

global symbol 'a symbolic name that is defined in, one
program .module and referenced in an,other.

" r
GO file a temporary disk storage file consisting of re'!/'

locatable object modules formed by a processor.

granule a block of disk sectors large enough to contaih
512 words (a page) of stored information.

job information table (JIT) a table associated with each
active iob. The, table contains accounting, memory
mapping, swapping, terminal DCB(M:UC), and tempo"',
rary monitor information.

job step a subunit of job processing such as compi lation,
assembly, loading, or execution. Information from cer­
tain commands (J OB, LIMIT, and ASSIGN) and all
temporary files created during a job step are carried
from one job step to the next but the steps are otherwise
independent.

key a data item consisting of 1-31 alphanumeric char-
acters that uniquely identifies a record.

key-in information entered by the operator via a
keyboard.

language processor a program that translates a user's
source language program into an object language
program.

library load module a load module that may be combined
with relocatable object modules, or other library load
modules, to form a new executable load module.

linking loader a program that is capable of linking and
loading one or more relocatable object modules and
load modules.

load map a listing of loader output showing the location
or value of all global symbols entering into the load.
Also shown are symbols that are not defined or have
multiple definitions.

load module (LM) an executable program formed by the
linking loader, using relocatable object modules
(ROMs) and/or modules (LMs) as input information.

logical device a peripheral device that is represented
in a program by an operational label (e.g., Blor PO)
rather than by specific physical device name.

logical device stream an information stream that may
be used when performing input frof!' or output to a sym­
biont device. At SYSGEN, up to 15 logical device
streams are defined. Each logical device stream is
given a name (e.g., l1, P1, C 1), each is assigned to
a default physical device, and each is given default
attributes. The user may perform I/O through a logical

xi

device stream with the default physical device and
attributes or he may change the physical device and/or
atfributcs, to ~atisfy the requi'rements of his job.

monitor a, prosram that supervises the processing, laad-
ing, and execution of other programs.

object language the standard binary language in which
the output of a language processor is expressed.

object module the series of records containing the load in- ,
formation pertaining to a single program or subprogram 1,'

(i .e., from the beginning to the end). Object modules
serve as input to the Load processor or Link processor.

on-line job a job that is submitted through an on-I ine
terminal by a command other than the BATCH command.

operational label a symbolic name used to identify a
logical system device.

overlay loader a monitor routine that loads and links
elements of overlay programs.

overlay program a segmented program in which the ele-
ment (i. e., segment) currently being executed may
overlay the core storage area occupied by a previously
executed element.

patch a symbolic representation of a correction to the
system that is used to temporari Iy correct the system
without necessitating a reassembly.

physical device a peripheral deviCe that is referred to
by a name specifying the device type, I/O channel,
and device number (also see "logical device").

program product a compiler or application program that
has been or wi" be released by Xerox, but is not re­
quired by all users and is therefore made avai lable by
Xerox on an optional basis. Program products are pro­
vided only to those users who execute a License Agree­
ment for each applicable installation.

prompt character a character that is sent to the terminal
by an on-line processor to indicate that the next line
of input may be entered.

protective mode a mode of tape protection in which only
ANS expired tapes may be written on through an ANS
DCB; no unexpired ANS tape may be written on through
a non-ANS DeB; all ANS tapes must be initialized by
the Label processor; no tape serial number specification
is allowed at the operator's console; specification of an
oUlput serial number in an ANS DCB forces processing
to be done only on a tape already having that serial
number; tapes mounted as IN may not be written; and
tapes mounted as other than IN must have a write ri ng.
(See "semiprotective mode".)

public library a set of library routines declared at

xii

SYSGEN to be public (i ,e., to be used in common by
011 concurre~t users).

reentrant an attribute of a program that allows. the
program to be shared by sev~ral u,sers concurrently.
Shored pmcessors in C P-V are reentrant. That is, each
instance of execution of the single copy of the pro­
gram's instructions has a separately mapped copy of the
execution data.

relative allocation -: ~lIocation of virtual memory to a
user program starting with the first unallocated page
availo'bl~.

relocatable obiect module (ROM) a program or subpro-
gram in object language generated by a processor such
as Meta-Symbol or FORTRAN.

remote processing an extension of the symbiont system
that provides flexible communication between CP-V
and a variety of remote terminals.

resident program a program that has been loaded into a
dedicated area of core memory.

response time the time between the completion of termi-
nal input and the first program activation.

scheduler a monitor routine that controls the initiation
and termination of all jobs, job steps, and time slice
quanta.

secondary storage any rapid-access storage medium other
than core memory (e. g., RAD storage).

semi-protective mode a mode of tape protection in which
a warning is posted to the operator when an ANS DC~
attempts output on a non-ANS tape or an unexpired At~
tape, when a non-ANS DCB attempts output on an un­
expired ANS tape, or when a tape mounted as INOUT
has no write ring. The operator can authorize the over­
writing of the tape or the override of INOUT through a
key-in (OVER and READ). ANS tapes may be ini­
tialized by the Label processor or may be given labels
as the result of an operator key-in; tape serial number
specification is allowed at the operator's console; and
specification of an output serial number in an ANS
DeB forces processing to be done only on a tape al­
ready having that serial number unless the operator
authori zes an ove/wri te. (See "protecti ve mode".)

shared processor a program (e.g., FORTRAN) that is
shared by all concurrent users. Shared processors must
be established during SYSGEN or via DRSP.

source language a language used to prepare a source
program suitable for processing by an assembler or
compiler.

special shared processor a shared processor that may be
in core memory concurrently with the user's program
(e. g., Delta, TEL, or the FORTRAN library).

specific allocation allocation of a specific page of
unallocated virtual memory to a user program.

SR l,SR2, SR31 and SR4 see IIsys tem register I', below.

static core' m09ule a program module that is in core
memory' but is not being executed.

stream-id the name of a logical device strearrl.

symbiont a monitor routine that transfers ;nformation
between disk storage and '~. peripheral device inde­
pendent of and concurrent with job processing.

symbolic input input from the device to which the 51
(symbolic input) operational label is assigned.

symbol ic name an identifier that is associated with
some particular source program statement or item so
that symbol ic references may be made to it even though
its value may be subject to redefinition.

SYSGEN see IIsystem generation II, below.

system generation (SYSGEN) the process of creating an
operating system that is tailored to the specific require­
ments of an installation. The major SYSGEN steps

include: gathering the relevant programs, generating
specifiC mo.n; tor tables, loading monitor and system
processors, and writing a bootable systemt9pe.

system library a group of standard routines in object-
language format, any of which may' be. incorporated in
a program being formed.

system register a register used by the moni tor to commu-
nicate information that may be c·f use to the user pro­
gram (e.g., error codes). System registers SR1, SR2,
SR3, and SR4 are current general registers 8, 9, 10,
and 11, respectively.

task control block (TCB) a table of program control in-
formation built by the loader when a load module is
formed. The TCB is part of the food module and con:­
toins the data required to allow reentry of library rou­
tines during program execution or to allow entry to the
program incases of traps, breaks, etc. The TCB is
program associated and not task associated.

unsatisfied reference a symbolic name that has been ref-
erenced but not defined.

xiii

1. INTRODUCTION

·cp-y, SERVICES,

Control Program-Five (CP-V) is a compr~hensive operating
system designed for use with Sigma. 6/7/9 and Xerox 560
icomputers and a variety of peripheral equipment. CP-V
offers: . .

• . On-line time-sharing, batch processing, remote pro­
cessing, transaction processing, and real-time services.

•

•

•

•

•

•

•

Ability to handle a large number' of concurrent users.

High efficiency due to hardware relocation map,
shared reentrant processors, multiple i/O processors,
and device pooling.

A complete recovery system coupled with preservation
of user files to provide fast restart following hardware
or software malfunction.

For on-line users: highly efficient and extensive soft­
ware, file saving feature, fast response time.

\

For batch users: on-I ine, local, and remote entry to
an efficient multiprogramming batch job scheduler.

For installation managers: thorough system monitoring
and reporting, control and tuning abi I ity, extensive
error checking and recovery features.

For all users: comprehensive accounting and a com­
plete set of powerful processors.

TIME-SHARING AND BATCH PROCESSING

CP-V allows multiple on-line terminal users to concurrently
create, debug, and execute programs. Concurrent to time­
sharing, CP-V allows up to 16 batch processing jobs to
execute in its multiprogramming environment. An efficient
multi-batch scheduler selects batch jobs for execution
according to priority, job requirements, and availability of
resources. Batch jobs may be submitted to this scheduler
from a local batch entry device such as a card reader, from
an on-line user's terminal, or from a r~mote site such as 0

remote batch terminal or another computer.

Time-sharing and batch users have access to a variety
of powerful and comprehensive language processors and
facilities. These processors and facilities are listed
below.

Processor

TEL

EASY

Edit

FORTRAN IV

COBOL

Meta-Symbol

BASIC

APL

FLAG

FDP

Delta

COBOL On-line
Debugger

PCL

link

LYNX

Load

Batch

Manage

SL-1

. elRC

'Function

Executive language control of a II
terminal activiHes. (On-line only.)

Creation, manipulation, and execution
of FORTRAN and BASIC programs and
da!a files. (On-line only.)

Composition and modification of pro­
grams and other bodies of text. (On­
line only.)

Compilqtion of Extended FORTRAN IV
programs.

Compilation of ANS COBOL programs.

Assembly of high-level assembly lan­
guage programs.

Compilation and execution of programs
or direct statements written in an ex­
tended BASIC language.

Interpretation and execution of pro­
grams written in the APL language.

Compilation of fast "Ioad-and-go"
FORTRAN programs.

Debugging of Extended FORTRAN IV
programs.

Debugging of programs at the assembly
language level. (On-line only.)

Debugging of ANS COBOL programs.
(On-line only.)

Transfer (and conversion) of data be­
tween peripheral devices.

linkage of programs for execution.

linkage of programs for execution.

linkage of programs for execution
(Batch only.)

Submission of batch jobs via an on-
I ine terminal or another batch job.

File retrieval, updating, and reporting.

Compilation of programs written in a
language designed specifically for
digital or hybrid simulation.

Analysis of electronic circuits •

Introduction

Processor

LEMUR'

EDMS

Sort/Merge

GPDS

Function

Constrr;ction and manipulation of
uns:1ared Ii braries

Orgon.itation, storing, updating, and
deletion of infor:mation in a centr<;:dized
data base.

Sorting and/or merging of records in
one or more fi les •.

. Experimentation with and evaluation of
system methods, processes, and designs.
(Batch only.)

REMOTE PROCESSING

The remote processing system is an extension of the CP-V
symbiont system. Its purpose is to provide for flexible com­
munication between CP-Vand a variety of remote terminals.
These terminals can range from a simple card reader, card
punch and line printer combination to another computer
systerr: with a widevarietyofperipheral devices. AnyCP-V
user (batch, on-line, ghost) can communicate with any
number of devices at one or several remote sites. Because
CP-V can act as a central site to some remote sites and
Simultaneously as a remote terminal to other computers,
the remote processing facilities encourage the construction
of communication networks.

TRANSACTION PROCESSING

The transaction processing feature of CP-V is an efficient
and economical approach to centralized information pro­
cessing and is a general ized package that is designed to
meet the requirements of a variety of business applications.
Transaction processing facilities provide an environment in
which several users at remote terminals may enter business
transactions, simultaneously utilizing a common data base.
The transactions are processed immediately, as they are
received, by application programs written ~specially for
the particular installation. As necessary, reports may
then be created and sent to an appropriate terminal.

REAL-TIME PROCESSING

The real-time services provided by CP-V allow users to
connect j nterrupts to mapped programs, control the state of
interrupts (e.g., trigger, arm/disarm, enable/disable),
clear interrupts either at the time of occurrence or upon
completion of processing, and disconnect interrupts no

2 System Programming Facilities

longer required. Users' may also request that Q- mappe~
program be held in core in order to reduce the- time req:~~red
to respond to an external evenl (via an interrupt) or~?·.'t­
allow various forms of special I/o to occur. Programs may
be connected to one of the monitor-Is clocks such that ofter
a specified period of time, a specified routine is entered.
In addition, dedicated foreground memory may be used as
inter-program communication buffers or as dedicated memory

_ for unmapped, master mode programs which may be directly
connected to external interrupts or real-time clocks.

SYSTEM PROGRAMMING FACILITIES

This manual describes the CP-V features that are designed
to aid the system programmer in the development, main­
tenance, and modification of the CP-V system. The facil­
ities described in this manual aid the system programmer
in the following areas:

•

•
•

•

Modification of the CP-V operating system at the
instruction level at boot-time.

Reconfiguration of peripheral devices at boot-time.

Analysis of crash dumps to determine the cause of a
system crash.

Creation and modification of the error message file
for the CP-V monitor overlays while the system is
operational.

• listing and analysis of hardware and software mal­
functions occurring during system operation.

• Development of shared processors such as compilers,
assemblers, command language processors, and
debuggers.

• Replacement, creation, and deletion of shared pro­
cessors and monitor overlays while the system is
opera ti ona I •

• Development of peripheral hardware diagnostic
programs.

• Development of real-time programs.

• Support of transaction processing facilit.ies.

• Implementation of remote diagnostics for the Xerox 560.

90 31 13B-l{11/76)

2. SYSTEM OVERVIEW

INTRODUCTION

The CP-Voperating system consists of a monitor and a
iumber of a~sociated processors (Figure 1). The monitor
,rovides overall supervision of program processing. The
associated processors provide 'specific functions such as
compi lotion, execution, and debugging.

PROCESSORS

The CP-V system is illustrated in Figure lot two levels. The
upper level lists the various monitor routines.· The lower
level lists the various processors. The processors are de-
scribed in the following paragraphs. .

Monitor

Basic Control
Scheduling and Swapping
Memory Managemen t
Job Step Control
Terminal I/O
Symbionts and Cooperatives
File Management

~ I I
Commend System language Execution
Processors Management Processors Control

Processors Processors
LOGON/ FORTRAN IV (OB)

LOGOFF (OB) Super (OBG) Meta-Symbol (OB) Link (OB)
TEL (0) Control (08G) AP (08) load (8)
EASY (0) Rates (0) BASIC (08) lYNX (OB)
CCI (B) FILL (OG) FLAG (OB) Delta (0)

FSAVE (OB) ANS COBOL (08) FOP (08)
FRES (OB) APl (08) COBOL
Fix (OBG) RPG (B) On-line

COMMAND PROCESSORS

The four processors.in this group are: . LOGON/LOGOFF,.
EASY, TEL, and eel. The first of these processors is avai 1-
able to on-line and batch users, the second and third are
available to on-line users on'ly, and the last is avai la~le to
batch users only.

LOGON/LOGOFF

LOGON admits on-line users to the system and connects
the user's terminal either to TEL or to an alternative pro­
cessor, such as BASIC, that has been se lected by the user.
LOGOFF disconnects a user from the system and does the
fino I cleanup and accounting.

System Integrity
Initialization and Start-Up
Operator Communication
Batch Debugging
System Debugging
lood and Link
Public and System Libraries

I I 1
Service Application User Processors
Processors Processors

(OBG)
Edit (OG) Sort/Merge (B)
PCl (08) EDMS (W
SYSGEN (OB) GPDS (W
DEFCOM (OB) CIRe (0B)t
SYMeON (OB) Manage (OB)t
ANLZ (OBG) T ronsoction Pro-
Ibtch (OBG) cessing (OB)
DRSP (OB)

VOLIN IT (OBGS) Sl-l (OB)t Debugger (0) ELLA (OBG)
label (B) GENMD (OBG) Show (OB)
STATS (OBG) LEMUR (OB)
Summary (OB)
SYSeON (OG)
GAC(OBG)
DEVDMP (S)
ON LIST (OBG)
PPS (G)
,.

~O on-line

8 botch

G ghost

S stand-alone

t Progrom product (see glossary).

Figure 1. CP-V Operating System

90 31 138-1{11/76} System Overview 3

EASY

EASY js a shared proce,ssor that enables the user to creote,
edit, execute, save, and delete program fj les written in
BASIC or FORTRAN. EASY aJso allows the user to create
and manipulate EBCDIC doto files. Although intended pri­
mari Iy for T eletype® ope.rations, EASY can be used with "
any type of on-line terminal supported by the system.
(Reference: EASY/LN,OPS Reference Manual, 90 18 73.)

TERMINAL EXECUTIVE LANGUAGE

TEL ;s the, default command processor for time-sharing and
serves as the terminal user'·s interface to the various services
of CP-V. TEL is functionally equivalent to the batch mode
Control Command Interpreter. Some of the functions per­
formed by TEL are:

1. Call ing user programs and system processors.

2. Changing the log-on password.

3. Assigning VO devices and DeB parameters.

4. Requesting extended memory mode.

5. Determining on-line user status.

6. Changing terminal platen size.

7. Sending messages to the operator.

8. logging off.

CONTROL COMMAND INTERPRETER

The Control Command Interpreter is the batch counterpart
of iE L. It provides the batch user with control over the
processing of batch programs just as TEL provides on-line
users with control over the processing of on-line programs.
(Reference: CP-V/BP Reference Manual, 90 1764.)

SYSTEM MANAGEMENT PROCESSORS

System manogement processors furnish the manager of a
CP-V insta !lotion with on-line control of the system. Four­
teen system management processors are supplied.

SUPER

Super gives the system manager control over the entry of
users and the privi leges extended to users. Through the use
of Super commands, the system manager may add and delete
users, specify how much core and disk storage space a
user will have, specify how many central site magnetic
tape un its a user wi II have, grant certa in users, such as
system programmers, special privi leges, (e. g., the privilege
of examining, accessing, and changing the monitor), and

@Registered trademark of the Teletype Corporation

4- Processors

individuo II y authorize or deny access to the variou's processors
for each user. Super is also used to create and delete rem~te
processing vvorkstations. . (Reference: CP-V ISM Reference
Manual, 90 16 74.)

, CONTROL

The Control processor provides control over system perfor­
mance. CP-V has a number of performance measurements
bui It directly into the system. Commands of the Control
processor enable the system manager to display these mea­
surements and to "tune" the system as needed by setting new
values for the parameters that control system performance.
(Reference: CP-V/SM Reference Manual, 90 16 74.)

RATES

The Rates processor allows the system manager to set relative
charge weights on the uti! ization of system services.

Specific items to which charge weights may be assigned
include

1. CPU time.

2. CPU time multiplied by core size.

3. Terminal interactions.

4. I/O CALs.

5. Console minutes.

6. Tapes and packs mounted.

7. Page-date storage.

8. Peripheral I/O cards plus pages.

(Reference: CP-V ISM Reference Manual, 90 16 74.)

FIX

The Fix processor enables the system manager to repair or
delete damaged file directories. It also provides HGP
reconstruction for private disk pack sets and the public
fj Ie system. (Reference: CP-V loPS Reference Man­
ual, 90 16 75.)

FILL

The FI lL processor performs three basi c fi Ie maintenance
functions:

1. It copies fi les from disk to tape as a backup.

2. It restores files from tape to disk.

3. It deletes files from disk.

(Reference: CP-V/OPS Reference Manual, 90 16 75.) .. ,

FSAVE

Th~ Fast" Save (FSAVE) processor is de~igned to save di~k
HIes on tape at or near tape speed. The processor is faster
than any other fi Ie saving procedure under CP~V. (Ref­
erence: CP-V/OPS Reference Manual, 90 16 75.)

FRES

The File Restore (FRES) processor is designed to restore to
disk files that were saved on tape by FSAVE or Fi II. (Ref­
erence: CP-V/OPS Reference Manual, 90 16 75.)

VOLINIT

VOllNIT provides for the initialization of public and pri­
vate disk packs. It is used to establish serial numbers and
ownership, to write headers and other system information in
selected areas of the volumes, and to test the surface
of the disks and select alternate tracks to be used in
place of flawed tracks. (Reference: CP-V/OPS Reference
Manual, 90 16 75.)

LABEL

The Label processor initializes ANS tapes by writing ANS
formatted labels. It may also be used to create "unlabeled ll

tapes from new tapes to be used as scratch tapes and to
print the contents of the header and trai ler labels of
labeled tapes or the first 80 bytes of each block on un­
labeled tapes. (Reference-: CP-V/OPS Reference Man­
ual, 90 16 75.)

STATS

The STATS processor displays and collects performance data
on a running system and produces snapshot fi les to be dis­
played by the report generator Summary. (Reference:
CP-V/SM Reference Manual, 90 16 74.)

. SUMMARY

. The Summary processor provides a global view of system
performance by formatting and displaying the statistical
data collected by STA TS. (Reference: CP-V ISM Reference
Manual, 90 16 74.)

SYSCON

SYSCON is a system control processor that can be used to
partition resources from the system, to return resources to
the system, and to display the status of the various system
resources. SYSCON can a Iso be used to bui Id, update, or
display the M:MODNUM file, a file which contains device
and controller model numbers. (Reference: CP-V/SM Ref­
erence Manual, 90 16 74.)

GRANULE ACCOUNTING CLEANUP PROCESSOR (GAC)

The Granule Accounting Cleanup (GAC) processor correlates
information between the fi Ie DIS KPOOL and the account
authorization file, :USERS. DISKPOOL is created by the
FSAVE processor and contains specific account information.
Each account record in DISKPOOL contains on entry for
a~cumulated public disk pack granules and an entry for ac­
cumulatedRAD granules. When GAC is run, these accumu­
lated vatues are compared against the maximum values for
the corresponding accounts in the :USERS fj Ie and the user1s
entry in the :USERS fi Ie is updated to reflect the latest
accumulated values for RAD and disk. When the accumu-

__ lated RAD or disk granules exceed the corresponding maxi­
mum values, this fact is noted in the report that is produced
by the GAC processor. (Reference: CP-V/OPS Reference
Manual, 90 16 75.)

DEVDMP

The Device Save/Restore processor (DEVDMP) is a stand­
alone utility program designed to dump entire disk volumes
to magnetic tapes for restoration at a later time. Restora­
tion may only be made to an identical storage unit. (Ref­
erence: CP-V/OPS Reference Manual, 90 16 75.)

LANGUAGE PROCESSORS

language processors translate high-level source code into
machine object code. Eight processors of special importance
are described below. A" of these can be used in both on­
line and batch mode.

XEROX EXTENDED FORTRAN N

The Xerox Extended FORTRAN IV language processor con­
sists of a comprehensive algebraic programming language, a
compiler, and a large library of subroutines. The language
is a superset of most available FORTRAN languages, con­
taining many extended language features to facilitate pro­
gram development and checkout. The compiler is designed
to produce efficient object code, thus reducing execu­
tion time and core requirements, and to generate extensive
diagnostics to reduce debugging time. The library contains
over 235 subprograms and is avai lab Ie in a reentrant ver­
sion. Both the compi ler and run-time library are reentrant
programs that are shared among aJI concurrent users to re­
duce the utilization of critical core resources.

The principal features of Xerox Extended FORTRAN IV are
as follows:

• Extended language features to reduce programming
effort and increase range of applications.

• Extensive meaningful diagnostics to minimize debug­
ging time.

Processors 5

•

•

•

In-line symbolic code to reduce execution time of
cri ti ca I parts of the program.

Oveday organization for minimal core memory
utilization.

Compi ler produced reentrant programs.

(Reference: Extended FORTRAN IV/LN Reference Man­
ual, 90 09 56, and~Extended FORTRAN IV/OPS Reference
Manual, 90 11 43.) ..

META-SYMBOL

Meta-Symbol is a procedure-oriented macro assembler. It
has services that are available only in sophisticated macro
assemblers and a number of special features designed to
permit the user to exercise dynamic control over the para­
metric environment of assembly. It provides users with a
highly flexible language with which to make full use of
the available hardware capabi lities.

Meta-Symbol may be used in either batch or on-line mode.
When used in on-I ine mode, the assembler allows programs
to be assembled and executed on -line but does not allow
conversational interaction.

One of the many Meta-Sy~bol features is a highly flexible
list definition and manipulation carabi lity. In Meta­
Symbol, lists and list elements may be conveniently rede­
fined, thus changing the value of a given element.

Another Meta-Symbol feature is the macro capabi Iity.
Xerox uses the term "procedure" to emphasize the highly
sophisticated and flexible nature of its macro capabi lity.
Procedures are assembly-time subroutines that provide the
user with an extensive function capability. Procedure def-

. inition, references, and recursions may be nested up to
32 levels.

Meta-Symbol has an extensive set of operators to facilitate
the use of logical and arithmetic expressions. These opera­
tors faci litate the parametri c coding capabi IHies avai lable
with Meta-Symbol (parametric programming allows for dy­
namic specification of both "if" and "how" a given state­
ment or set of statements is to be assembled).

Meta-Symbol users are provided with an extensive set of
directives. These directives, which are commands intrinsic
to the assembly, fali into three classes:

1. Directives that involve manipulation of symbols and
are not conditionally executed.

2. Directives that allow parametric programming.

3. Directives that do not allow parametric programming.

A number of intrinsic functions are also included in Meta­
Symbol. These give the user the ability to obtain informa­
tion on both the structure and content of an assembly time
constn.:ct. For example, the user can acquire information

6 Processors

011 the length ofa certain 'Ii,st~ . He can' inquire ahouto
specific syrnboldnd whether it occurs in a procedure refer­
ence. (Reference: Meta-Symbol/LN,OPS Reference Man-
ual, 9009 52.) ' ..

AP

Assembly' Program (AP) is i:/four-phase assembler that reads
source language programs and converts them to object lan­
guage programs. AP outputs the object language program,
an assembly listing, and a cross reference (or concordance)
listing. AP is available in both the on-line and batch
modes.

The following list summarizes AP's more important features
for the programmer:

• Self-defining constants that facilitate use of hexa­
decimal, decimal, octal, floating-point, scaled fixed­
point, and text string values.

• The facility for writing large programs in segments
or modules. The assembler will provide information
necessary for the loader to complete the I inkage be­
tween modules when they are loaded into memory.

• The label, command, and argument fields may contain
both arithmetic and logical expressions, using constant
or variable quantities.

• Full use of lists and subscripted elements is provided.

• The DO, 001, and GOTO directives allow selective
generation of areas of code, with parametric constants
or expressions evaluated at assembly time.

• Command procedures allow the capab; I ity of generating
many units of code for a given procedure call line .

• Function procedures return values to the procedure call
line. They also provide the capability of generating
many units of code for a given procedure call line.

• Individual parameters on a procedure call line can be
tested both arithmetically and logically.

• Procedures may call other procedures,ond may call
procedures recursively.

BASIC

BASIC is a compiler and programming language based on
Dartmouth BASIC. It is, by design, easy to teach, learn,
and use. It allows individuals with little or no programming
experience to create, debug, and execute programs via an
on-line terminal. Sllch programs are usually small tomedium
size applications of a computational nature.

BASIC is designed primarily for on-line programdevelopment
and execution, or on-line development and batch execu­
tion. In addition, pr'ograms may be developed and executed
in batch mode.

BA!)lC provides two use.r modes' of operatioh. The editing
Inode ,is' used for creating and modifying programs.Tre
'::':: i '

'ci5mpi lation/ executi.on mode is used for rlJnning completed
pl'ograms. This a~(Qn'gement simplifies and speeds up the
program deve lopmentcycle.,

Statements may be entered via a .terminal andimmedia,tely .
executed. The principal benefit ,of direc;t execut'ion is ~n­
line development of progrciinscln-cl short simple computations.
During execution, programs may. be investigated for' loop
dete~tion, snapshots of variables maybe obtained, values
of variables may be changed, flow of execution may be re­
routed, and so on. This unique capabi lity allows an on­
line terminal to be used as a "super" desk calculator.

At compile and execute time, the user may specify if an
array dimension check is to be made. In the safe mode,
statements are checked to verify that they do not reference
an array beyond its dimensions. In the fast mode, this
time consuming check is not made. Thus, the safe mode
CQuid be used during checkout, and the fast mode could be
used ta speed up execution when the program reaches the
production stage.

BASIC provides an image statement that uses a "picture" of
the desired output format to perform editing. It also has
TAB capability and a precision option to indicate the num­
ber of significant digits (6 or 16) to be printed.

An easy-to-use feature is provided to ~lIow the user to read,
write, and compare variable alphanumeric data. This is
particularly important for conversational input processing .

. Chaining permits one BASIC program to call upon another
for compilation and execution without user intervention.
Thus, programs that would exceed user core space may be
segmented, and overlay techniques may be employed via
the chaining facility. (Reference: BASIC/Reference Man­
ual, 90 15 46.)

FLAG

FLAG (FORTRAN Load and Go) is an in-core FORTRAN
com pi ler that is compatible with the FORTRAN IV-H class
of compilers. It can be used in preference to the other
FORTRAN compi le.rs when users are in the debugging phase
of program ·d~ve'lopme'nt. FLAG is a one-pass compiler and
uses the Extended .FORTRAN IV library. Included in the
basic externa~ functions are the Boolean functions lAND
(AND), IEOR (exclusive OR), and lOR (OR), which give
the FORTRAN user a bit manipulation capability.

If several FLAG jobs are to be run sequentially, they may
be run in a sub-job mode, thus saving processing time nor­
ma lIy needed for the Contro I Command Interpreter (CCI) to
interpret the associated control cards. In this mode,
FLAG will successively compile and execute any number
of separate programs, thereby reducing monitor overhead.

1 he FLAG debug mode is a user-selected option that gener­
at,es extra instructions in the campi led program to enable
the user, during program execution, to detect errors in pro­
gram logic that mightothelwise go undetected or cause un­
explainable., program fai lure. (Reference: FLAG/Reference
Manual, 90 16 54.)

ANS COBOL

The Xerox ANS COBOL compi I.er offers the user a powerful
and convenient programming language facility for the im­
piementation of business or commerical applications. The
language specifications fully conform to the proposed ANSI
standard for the various functional processing modules.
Only those language elements that cause ambiguities or are
seldom used have been deleted. The compi ler's design
takes full advantage of the machine's unique har~ware
features, resulting in rapid compi lotion of source code,
rapid execution of the resulting object code, and the gen­
eration of compact programs. The result is a highly efficient
programming system requiring a minimum amount of storage.

Xerox ANS COBOL contains many facilities that are either
not found in other systems or, if available, are provided
only at greater cost in terms of equipment required. Some
of the facilities that provide more flexibility and ease of
use in program development include

1. Implementation of table handling mode.

2. Sort/merge linkage.

. 3. Sequential access.

4. Random access linkage.

5. Segmentation.

6. Report writer.

7. Library uti! i zat ion ..

8. Calling sequence for FORTRAN, Meta-Symbol, etc.

9. Packed decimal as well as floating-point arithmetic
formats.

10. Data name series options for ADD, SUBTRACT, MUL­
TIPL Y, DIVIDE, and COMPUTE verbs.

Processors 7

TI--t systePi provides the user with a comprehensive st=t of

. cid~ to rnir':mize the time required to print "bug-freel! pro­
gro!l'l$ 'ir; .}h,t} form of I is lings .; Thes~ listings include

1. The source. fan.SU(f9~ inpl!t to the compiler with inter­
spersed Eng! ish '1anguage diagnostic' me$~9'9~s.

2. An optional I is,ting ~f the ~'elocatable binary output,
printed in line}'wmber sequence identical to the source
language listing.'·'

3. A cross-reference listing, indicating by line number
where each data name or paragraph name is defined in
the COBOL program and where each reference is
located.

In addition, at run time, the user may use TRACE and
EXHIBIT to follow execution of the procedure division.

The compiler is designed to take full advantage of high­
speed, random access secondary storage (e. g., RAD stor­
age). This feature means faster job execution because of
minimized I/O delays, and smaller core memory require­
ments because of rapid overlay service. (Reference: ANS
COBOL/LN Reference Manual, 90 15 00.)

APl

APl is an acronym for A Programming Language, the lan­
guage invented by Ken-;:;eth Iverson. IT is an interpretive,
problem-solving language. As an interpretive language,
APL does not wait unti I a program is completed to compi Ie
it into object code and execute it; instead, APL interprets
each line of input as it is entered to produce code that is
immediately executed. As a problem-solving language,
APL requires minimal computer programming knowledge; a
problem is entered into the computer and an answer is re­
ceived, a" in the APL language.

Because APL is powerful, concise, easy to learn, and easy
to use, it is widely used by universities, engineers, and
statisticians. It also has features that make it attractive
for business applications where user interaction and rapid
feedback are key issues. One of AP LiS major strengths is
its ability to manipulate vectors and multidimensional arrays
as easi Iy as it does scalar values. For example, a matrix
addition that might require a number of statements and
several loops in other languages can be accomplished as
A + B in APL. This type of simplification exemplifies APL's
concise power. (Reference: APVLN/OPS Reference Man­
ual, 90 1931.)

8 Processors

RPG

Xerox RPG (Report Program Generator) is a convenient
means', of preparing reports from information available in
computer-readable forms, such as punched cards, magnetic
fapeJ and magne'tic disks. In addition, it is a means of
~stahJis.hing and updating files of information, usually in
<;:onjunction with preparation of reports.

RPG provides itscapobil ities through generation (compila­
tion) of object programs, each of which is tailored to pro­
duce' a different set of reporting results and/orfile processing
desired by the user. The RPG object programs are capable
of accepting input data, retrieving data from existing fi les,
performing calculations, changing formats of data, updating
existing files, creating new files, comparing data values
to one another and to specified constants to determine
appropriate handling, using user-defined processing sub­
routines, using system library subroutines, and printing re­
ports derived from the input and file data.

Xerox RPG has several advantages over the more traditional
method of writing object programs in a symbolic programming
language. The RPG language is oriented toward the user's
problem, describing reporting requirements, rather than
toward the mechanics and manipulations of computer usage.
The language and specification techniques are easily learned.
A user can become proficient in RPG after writing only a
few programs, whereas an equal facil ity in symbol ic pro­
gramming would require considerable experience. (Ref­
erence: RPG/Reference Manual, 90 1999.)

SIMULA nON LANGUAGE (PROGRAM PRODUCT)t

The Simulation Language (SL-1) is a simplified, problem­
oriented digital programming language designed specifically
for digital or hybrid simulation. SL-1 is a superset of CSSL
(Continuous System Simulation Language), the standard
language specified by Simulation Counci Is, Inc., for
simulation of continuous systems. It exceeds the cap­
abilities of CSSL and other existing simulation languages
by providing hybrid and real-time features, interactive
debugging features, and a powerful set of conditional trans­
lation features.

SL-1 is primarily useful in solving differential equations, a
fundamental procedure in the simulation of para lie II con­
tinuous systems. To perform this function, SL-l includes
six integration methods and the control logic for their use.
In hybrid operations, SL-l automatically synchronizes the
problem solution to rea I-time and provides for hybrid input
and output.

Because of the versati lity of Xerox computing systems and
the broad applicability of digital and hybrid simulation

t
See "program product ll in glossary.

I

techniques, opp\ i cations for SL -·1 exist across the real-time'
;'spectrum. The library concept of SL-l allow~ the user
to expand upon the Xerox supp\ ied macro set and facil-
itat~s the development of mac!';:; I i bfaries oriented to any
desired application. (Reference.:: Sl-l/Reference ,Man­
ual, 90 16 76.)

EXECUTION CONTROL PROCESSORS

Proces~rs in this group control the execution of object pro­
grams. Delta and COBOL On-Line Debugger can be used
in on-line mode only. Load can be used in batch mode
only. link and FOP can be used in either batch or on­
line mode.

LINK

link is a one-pass linking loader that constructs a single
entity called a load module, which is an executable pro­
gram formed from relocatable object modules (ROMs) .. link
is designed to make full use of mapping hardware. It is not
an overlay loader. If the need for an overlay loader exists,
the overlay loader (Load) must be called and the job must
be entered in the ba1tch stream. (Reference: CP-V/TS
Reference Manual, 9009 07.)

I

LOAD

load is a two-pass overlay loader. The first pass processes

1. All relocatable object modules (ROMs).

2. Protection types and sizes for control and dummy sec­
tions of the ROMs.

3. Expressions for definitions and references (primary,
secondary, and forward references).

The second pass forms the actual core image and its re­
location 'dictionary. (Reference: CP-V/BP Reference Man­
ual, 901764.)

LYNX

LYNX is a load processor that is available in both the on­
line and batch modes. LYNX has most of the capabilities
of the overlay loader and also provides the same control
over internal and global symbol table construction which is
available in the Link loader. lYNX may be viewed as a
preprocessor for the overlay loader. After it analyzes the
user's commands, it constructs a table of loader control in­
formation which it then passes to the overlay loader. It is
the overlay loader which actually performs the loading
process.

DELTA

Delta is designed to aidinrhe dehugging of prbgrams aj'
the ;assembly··!onguage or mac;hine-Ianguage ~le¥e1s. It
operates dfi bbie~t programs and tables of internal and glo­
bal symbols used by the· programs but does not requir,e that
the tables- be <;It'hand. With or withouttne'sy~boJ tobles,
Delta reco.gnizes computer j.nstructiOn rOherrionic codes and
con·assernble machine-tangllage programs cn an instructicn­
by~instruction basis. The, main"pUl"pose of Delta, -however,
is to foci Ii tate the activi'fies',of debugging by -

1. Examining, inserting, and -modifying such program
elements as instructions, numeric values, and coded
info.rmation {i. e., data in a" its representations and
formats}.

2. Contro.lling execution, including the insertion of break­
points into a program and requests for breaks on
changes in elements o.f data.

3. Tracing execution by displaying Information at desig­
nated po.ints in a program.

4. Searching programs and data for specific elements and
subelements.

Although Delta is specifically tailored to machine language
programs, it may be used to debug any program. Delta is
designed and interfaced to the system in such a way that it
may be called in to aid debugging at any time, even after
a program has been loaded and execution has begun. (Ref­
erence: CP-V/TS Reference Manual, 90 09 07.)

FORTRAN DEBUG PACKAGE

The FORTRAN Debug Package (FOP) is made up of special
library routines that are called by Xerox Extended FOR­
TRAN IV object pro.grams compiled in the debug mo.de.
These routines interact with the program to detect, diag­
no.se, and in many cases, repair program errors.

The debugger can be used in batch and on-line modes. An
extensive set of debugging commands are avai lable in both
cases. In batch operation, the debugging commands are
included in the so.urce input and are used by the debugger
during execution o.f the program. In on-line operations,
the debugging commands are entered through the terminal
keyboard when requested by the debugger. Such requests
are made when execution starts, stops, or restarts. The de­
bugger normally has co.ntrol of such stops.

In addition to the debugging commands, the debugger has
a few automatic debugging features. One o.f these features
is the auto.matic comparison of standard calling and receiv­
ing sequence arguments for type ccmpatibi lity. When app/i­
cable, the number of arguments in the standard calling se­
quence is checked for equality with the receiving sequence.
These ca lIing and receiving arguments are also. tested for
protection conflicts. Another automatic feature is the test­
ing of subprogram dummy storage instructions to determine if
they violate the protection of the co Iling argument. (Ref­
erence: FOP/Reference Manual, 90 16 77.)

Processors 9

COBOL ON-L1NE DEBUGGER

The COBOL On-line Debugger is designed to be used with
Xerox ANS COBOL. The debugger is a special COBOL
run-time libra-ry routine that is. ,called by progra,ms compi led
in the TEST' mQde. This routin~ allows the programmer to
monitor and cORlrol both the execution of h.is progrpm and
the contents of data-Hems .duiing on:-lirie execu.tion. The

, '. ' -. ~
debugger also allows the COBOL source p .. ogram to be
examined and modified.

The debugg.3f can only be used during on-line execution;
however I programs that haye been compi led for use with
the debugger may be run i~ the botch mode. This is not
recommended, though, because of the increased program
size when the TEST mode is specified. (Reference: ANS
COBOL/On-line Debugger Reference Manual, 90 3060.)

SERVICE PROCESSORS

The processors in this group perform general service func­
tions required for running and using the CP-V system.

EDIT

The Edit processor is a line--at-a-time context editor desig­
nated for on-line creation, modification, and handling of
programs and other bodies of information. All Edit data is
stored on disk storage in a keyed fj Ie structure of sequence
numbered, variable length records.. This structure permits
Edit to directly access each line OJ record of data.

Edit functions are controlled through single line commands
supplied by the user. The command language provides for
insertion, deletion, reordering, and replacement of lines
or groups of lines of text. It also provides for selective
printing, renumbering records, and context editing opera­
tions of matching, moving, and substituting .!ine-by-line
within a specified range of text lines. File maintenance
commands are also provided to allow the user to build, copy,
merge, and delete whole fj les. (Reference: CP-V ITS Ref­
erence Manual, 9009 07.)

PERIPHERAL CONVERSION LANGUAGE

The Periphera I Conversion Language (PC L) is a uti Iity sub­
system designed for operation in the batch or on-line en­
virC?nment. It provides for information movement among
card devices, line printers, on-line terminals, magnetic
tape devi ces, disk packs, and RAD storage.

PCL is controlled by single-line commands supplied through
on-line termina I input or through command cord input in the
job stream. The command language provides for single or
multiple file transfers with options for selecting, sequencing,

10 Processors

formatting, and converting d~:-a records. Additional file
maintenance and util ity commands are provided. (Reference:
CP-V ITS Re.fcrence Manual, 90 09 07 and CP-V IBP Ref­
erence Marrual, 90 1764.)

SYSGEN

SYSGEN ismcde up of several processors. These proces­
sors are used to generate a variety of CP-V systems that are
tai lored to the specific requirements of on instal/otion. The
SYSGEN processors are PASS2, LOCCT, PASS3, and DEF.
PC L is used to select from various sources the relevant
modules for system generation. PASS2 compi les the required
dynamiC tables for the resident monitor. LOCeT and PASS3
file away and execute load card images to produce ioad
modules for the monitor and its processors. DEF writes a
monitor system tope that may be booted and used. (Refer­
ence: Cp-v/SM Reference Manual, 90 16 74.)

DEFCOM

DEFCOM makes the DEFs and their associated values in one
load module avai lable to another load module. It accom­
plishes this by using a load module as input and by produc­
ing another load module that contains only the DEFs and
DEF values from the input module. The resultant load
module of DEFs can then be combined with other load
modules. DEFCOM is used extensively in constructing the
monitor and the shored. run-time libraries. (Reference:
CP-V/BP Reference Manual, 90 16 64.)

SYMCON

The Symbol Control Processor (SYMCON) provides a means
of controlling external symbols in a load module and of
building a global symbol table. Its primary function is to
give the programmer a means of preventing double defini­
tions of external symbols. It may also be used to reduce
the number of external symbols. For example, if certain
load modules cannot be combined because their control
tables are too large, the tables may be reduced in size by
deleting all but essential external symbols. (Reference:
CP-V/BP Reference Manual, 90 1764.)

ANLZ

AN LZ provides the system programmer with a means of ex­
amining and ana Iyzing the contents of dumps token during
system recovery. It is called automatically by the Automa­
ti c Recovery Procedure and is executed as a ghost job. It
may also be called by the operator to analyze tope dumps
when recovery is not possible, or by an on-line user to
examine crash dumps or the currently running monitor.
(Reference: Chapter 4.)

BATCH

The Botch processor· is us~d to submit a fj Ie or c· series Qf
files to the batch queue for execution. Through Batch pro~~,"
cessor commands; the following capabi IHies are available: ..

1. A file may be inserted into a file being submitte.d .fpr
exec~tion, thus bringing together more thon one fj fe
tocreote a single·'iob.

2. Selected strings and'fields existing in fi les being sub­
mitted for execution may be replaced by new strings
and fields.

3. The results of string and field replacements can be
examined before the job is submitted to the batch
stream.

4. Files to be submitted for executio~ may reside on tape
or private disk pack.

5. Jobs may be submitted to run in an account other than
the account from which the job is submitted.

The Batch processor may be called in either the on-line or
the batch mode. (Reference: CP-V/TS Reference Man­
ual, 90 09 07.)

DRSP

DRSP (Dynamic Replacement of Shared Processors) enables
the system programmer to dynamically add, replace, or
delete processors during normal system operation with other
users in the system. (Reference: Chapter 7.)

ELLA

The Error Log Listing program (ELLA) provides an efficient
tool to list and sort the error data bose which is automati­
cally generated and updated by the CP~V system. (Refer­
ence: Chapter 6.)

SHOW

The Show processor allows the user to display his current
maximum system services and resources, the peripheral de­
vices that he has been authorized to use, and several other
system user parameters. (Reference: CP-V/BP Reference
Manual, 90 17 64.)

GENMD

The GENMD processor that performs load module patching
at boot time is available during normal system operation in
ghost, batch, and on.-line modes. As a ghost job, input
and output is through the OC device with the format the
some as during the boot process. As a batch job, input is
through the M:C device and output is through M:lL. The
format is the same as during the boot process except that
the initial lMN may be specified on the processor control
card (:GENMD lMN). (See GENMD Commar.xls,
Chapter 3.)

As an' on':'line processor, additional capabilities are
available. The M:C DCB may be assigned to a file of
patches; the M:SI DCB may be assigned (implicitly or

90 31 138-2(9/78)

expliCitly} to the lMN to be patched; DELTA maybe .
associated to simplify the Patching format", o'nd 0 descrip­
tion of the input format may be obtained°by typing a If? 1\ •.

lEMU~

LEMUR CPbrtiry Ed:tor'onc! Maintenance Utility Routine}
lets 'th-e Jser construct, delete, or copy library modules of
either the ROM or toad module type. (Reference: CP-V/
BP Reference Manual 90 09 07).

, A'PLICA nON i»ROCEIIORI

The application prOcessors are intended for use for specific
types of applications.

SORT/MERGE

The Xerox Sort/Merge processor provides the user with a
fast, highly efficient method of sequencing a nonordered
file. Sort may be called as a subroutine from within a user's
program or as a batch processing iob by control cards. It
is designed to operate effiCiently in a minimum hardware
environment. Sorting can take place on from 1 to 16 keys
and each individual key field may be sorted in ascending
or descending sequence. The sorting technique used is
that of replacement selection tournament and offers the
user the flexibility of changing the blocking and logi~(ll
record lengths in explicitly structured files to different
values in the output file.

The principal highlights of SORT are as follows:

1. Sorting copabi lity allows either magnetic tapes, disks,
or both.

2. linkages allow execution af user's own code.

3. Sorting on from 1 to 16 key fields in ascending or
descending sequence is allowed. Key! may be alpha­
numeric, binary, packed decimal, or zoned decimal
data.

4. Records may be fixed or variable length.

5. Fixed length records may be blocked or unblocked.

6. Disks may be used as file input or output devices, or
as intermediate storage devi ces.

7. Sort employs the read backward capability of the tape
device to eliminate rewind time.

8. User-specified character collating sequence may be
used.

9. Buffered i nput/ output is used.

(Reference: Sort-Merge/Reference Manual, 90 11 99).

EDMS (PROGRAM PRODUCT)t

EDMS is a generalized data management system that enables
the user to create on integrated data bose. It is d esi gned
to be used with COBOL, FORTRAN, and Meta-Symbol
processors. It simplifies programming by performing most of
the I/O logic ond data base management for the applica­
tion programmer.

tSee "program product" in glossary.

Processors 11

The princip9' features of EDMS are as follows:

• The, user con describe data in various data structures.
Using sets, any element can be related to any other.
element .. n\~"dota structures' in-c14de lists and hier­
archies· (tr~es)~ ,The. tw~ reJofio,fUhips can be ~ombined
to form extensive networks of data. '

• Access techniques include random, direct, indexed,
and indirect (relative to another rec~rd).

• An EDMS data base may consist of up to 64 monitor
files.

• Multiple secondary indexes can be defined by the user
to allow records to be retrieved via any combination
of secondary record keys.

• Users moy construct any number of logical files or data
boses within an EDMS file.

• Data is described separately from the user program to
faci litate management of the data base.

• Comprehensive security exists at all levels of a file.

• Journalization provides an audit trail for backup and
recovery.

• A dynamic space inventory is maintained to facilitate
rapid record storage and to optimize the use of avail­
able storage space.

• Detailed data description is provided for inclusion into
the user's application program to reduce p~ogramming
effort.

• FHe ~ lib logic is performed for the user program
including

1. logical or physical record deletion.

2. Record retrieval on random or search basis.

3. Record insertion or modification.

(Reference: EDMS/Reference Manual, 9030 12.)

GPDS (PROGRAM PRODUCnt

The General Purpose Discrete Simulator provides engineers
and administrators, whose programming experience is mini­
mol, with a system for experimenting with and evaluating
system methods, processes, and designs. Providing a means
for developing 0 brood range of simulation models, it allows
organizing, modeling, and analyzing the structure of a sys­
tem, observing the flow of traffic, etc. Potential appl ica­
tions include

• Advanced management planning.

• Analysis of inventory or financial systems.

12 Processors

• Studies .of messlJge switching and communications
networks.

• Risk and 'capital investment studies.

., Evaluation and data processing systems.

• Jab shop and queuing studies.

Although GPDS is compatible with other simulator systems,
it has a number of sofient features not usually found in
competitive versions. (Reference: GPDS/Reference Man­
ual, 90 1758.)

MANAGE (PROGRAM PRODUCnt

Manage is a generalized file management system. It is
designed to allow decision makers to make use of the computer
to generate and update files, retrieve useful data, and gen­
erate reports without having a knowledge of programming.

Manage consists of four subprograms: Dictionary, Fileup,
Retrieve, and Report. The Dictionary subprogram is a data
file and is the central control element in the Manage sys­
tem. It consists of definitions and control and formatting
parameters that precisely describe the characteristics of a
data file. The File up subprogram initially creates and then
maintains a data file. The Retrieve subprogram extracts data
from a data base file according to user-specified criteria.
The Report subprogram automatically prepares printed reports
for datci extracted by the Manage retrieval program. (Ref­
erence: Manage/Reference Manual, 90 16 10.)

CIRC (PROGRAM PRODUCT)t

CIRC is a set of three computer programs for electronic cir­
cuit analysis: CIRC-DC for dc circuit analysis, CIRC-AC
for ac circuit analYSis, and CIRC-TR for transient circuit
anolysis. The programs are designed for use by a circuit
engineer, and require little or no knowledge of programming
for execution.

CIRC can be executed wi th three modes of operation pos­
sible: conversational {on-line} mode, terminal batch entry
mode, and batch processing mode. The system manager will
determine which of these modes are available to the engi­
neer, based on type of computer installation and other, in­
stal lotion decisions.

• The on-line mode offers several advantages since it
provides true conversational interaction between the
user and computer. Following CIRC start-up procedures,
elRC requests a control message from the user. After
the control message is input (e. g., iterate a cycle of
calculations with changed parameters) the computer
responds (via CIRe) with detai led requests for appli­
cation data. These requests are sufficiently detailed to

tSee "program product" in glossary.

virtually eliminate mislinderstondings by the engineer.
This mode is highl y useful in a highly interactive en­
vironment that produces a low votume of output and
requires limited CPU time.

• The terminal batch entry mode allo"Ns efficient handl ing
of high volume output and large CPU time, requirements
while preserving the advantages of the terminal as an
input device. Two files are required, one containing
all CIRC input including a circuit description and
control messages and the other directing the execution
of CIRC. The job is entered from the terminal into the
batch queue and treated like a batch job.

• The batch mode should generally be used for jobs in­
volving large volumes of computations and outputs. It
enables the user to concentrate on data preparation
with virtua IIy no involvement in programming consider­
ations. The system manager can provide a set of
start-up cards that never change, and these will con­
stitute the entire interface between user and executive
softwa~e. However, the batch mode offers less flexi­
bility in experimenting with a circuit and slower
turnaround time in obtaining answers.

{References: CIRC-AC/Reference Manual and User's Guide,
90 16 98, CIRC-DC/Reference Manual and User's Guide,
90 16 97, and CIRC-TR/Reference Manual and User's
Guide, 90 17 86. }

USER PROCESSORS

Users may write their own processors and add them to
CP-V or replace CP-V processors. The rules governing the
creation and modification of processors are described in
Chapter 7.

MONITOR

The monitor responds to the moment-by-moment require­
ments of controlling machine operation, switching between
programs requiring service, and providing servi ces at the
explicit request of the user's program. The monitor pro­
grams that perform these functions are listed below.

1. Basic Control.

2. Scheduling and Swapping.

3. Memory Management.

4. File Management.

5. Multibatch Job Scheduling.

6. Resource Management.

7. Job Step Control.

8. Terminal Vo Handling.

9. Symbionts •.

10. Cooperatives.

11. System Integrity.

12. Initial ization and· Start-up.

13. Opfm:itor Com'mur,lcdt·ions ..

14. Batch Debugging.

15. lood-and-link.

16. System Debugging.

The basic control system is an I/O interrupt service and
handling routine. It includes trap and interrupt handlers,
routines that place requests for I/o in a queue, and basic
device I/O handling routines.

The scheduling and swapping module makes the decision to
swap, selects the users to swap in and out, sets up the I/O
command chains for swap transfers, and selects the next user
for execution. It also ensures that any associated, but not
currently resident, shared processors are brought in with
each user. Special algorithms control I/o scheduling and
the balance of machine use between on-line and batch.

The memory management module controls the use of core
and disk storage. Specifically, it controls the allocation of
physical core memory, maintains the map and access images
for each user, services the "get" and "free" service calls
for memory pages, and manages the swapping disk space.

Fi Ie management routines control the content and access to
physical files of information. These routines perform such
functions as indexing, blocking and deblocking, managing
of pools of granules on RADs and disk packs, labeling, la­
bel checking and positioning of magnetic tape, formatting
for printer and card equipment, and controlling access to
and simultaneous use of a hierarchy of fi les.

The multibatch job scheduling routines select jobs to be run
from the waiting input queue depending on priority and re­
source and partition availability.

Resource management facilities keep track of the number
of resources of each kind (i. e., tape drives, disk spindles,
core) that are in use. For a batch job, the multi-batch
scheduler compares the resources required with the avail­
able resources and does not start the job unti I suHi ci ent
resources are available. Once the job is started, the re­
sources that are required by the job are reserved for the
exclusive use of the job, thereby guaranteeing that they
wi II be avai lable for the duration of the job.

Monitor 13

Job step control routines are entered between major segments
of a job or an on-line session~ They perform the monitor
func.tions r.e.~v4.re~ he,tweenjob steps such as

1. Prot~ssing 'error exit and abort CALs.

2. Ha'ndling monitor a~rts.,

,3. Processing interpr.etlve exits to associated shored pro ...
cessors or to load program modules., . '

4. Merging DCB assignments for execution.

5. Checking user authorization for individual proce'ssors.

6. Fetching program load modules into core.

Terminal I/o handl ing routines perform read-write buffer­
ing and external interrupt handling for I/o directed to user
terminals. These routines also translate character codes,
insert page headers and VFC control characters, simulate
ta.bs, and perform other formatting tasks.

Symbiont routines transfer data from the card reader to log­
ical device streams on disk storage and from logical device
streams on disk storage to the card punch or line printer.

Cooperative routines intercept read, print, or punch com­
mands in user programs and transfer data from er to legical
device streams residing en disk storage. The input ceepera­
tive simulates card reading from a legical device stream.
The ovtput ceoperative builds a legical device stream using
intercepted pregram eutput directed by the user program to
a I ine printer er card punch.

System integrity facilities provide error detection and re­
covery capabilities. This includes security to user files and
automatic high-speed restart in case ef system failure. Suf­
ficient informatien is recorded to iselate errers and failures
caused by hardware er seftware.

Initial izatien and start-up routines are stored on tape and
are booted intO' core storage. After they are in core, they
load the menitor rcet intO' cere and turn contrO'l over to' the
root. The meniter root then completes the initializatien
of the moniter by starting and running the program called
GHOSTl which completes the patching ef the system and
the initializatien ef the swapping disk and hardware.

Operater cemmunicatien routines provide for communica­
tien between the meniter and the eperator. They transmit
messages to' the operator and precess key-ins received frem
the operater.

14 Monitor

. Batch debugging routines' 'provide batch programs with
debugging capability through the ~se ef procedure calls.
Any batch program may take a snapshot;durnp of a specified
segment ,ef memory, either' -on ~n unconditienal er a con­
ditienal basi s.

System d~bugging reutines previde debugging services to'
system pregrammers. Three debugging reutines are avail­
able. They are

1. Executive Delta: This is a stand-a lene pro cesser and
is essentially the same as en-line Delta. Executive
Delta is optionally loaded at beet time along with the
reot of the men iter and moniter system tables.

2. Analyze: This pregram is intended fer debugging CP-V
crash dumps. TO' accomplish this, it performs two
majer functiens.

a. It summarizes th~ complete software envirenment
at the time ef the crash in a series ef tables.

b. It permits en-line interactiens simi lor to' Delta.

3. Recever: This pregram provides the "bai I-eut" exit
from the monitor. The errer cede that is transmitted
to RECOVER defines the preblem and the medule that
discevered the problem.

Lead-and-link routines give batch pregrams three types of
leading and linking capability. Threugh the use ef proce­
dure co I Is, a batch pregram may

1. Load an overlay segment intO' cere sterage.

2. Store the calling program on disk storage, lead the
called program intO' cere sterage, and transfer centrel
to' the calfed program.

3. Load a program into cere sterage, transfer control to'
the called pregram, and release the core area used by
the calling pregram.

4. Pass a cemmand I ine to' the cal led pregram.

CP-V has two types of FORTRAN libraries. One type is a
publ ic I ibrary and the ether is a system library. In the
standard release of CP-V, there are three FORTRAN public

. I ibraries. One library (Pl)contains a useful set of Extended
FORTRAN IV run-time library routines;anether (PO) centains
Pl and the FORTRAN Debug Package; the th.ird (P4) cen­
tains Pl and the FORTRAN real-time features. These three
I ibraries are sO' censtructed that a single cepy is shared ameng
all cencurrent users. The system I ibrary contains a cellec­
tion ef reutines that are less frequently used than the public
library reutines. They are in I ibrary load module ferm and
are loaded only with pregrams that reference them.

SCHEDULING AND MEMORY MANAGEMENT

Scheduling and memory management reutines control the
overa" eperatien ef the system. Inputs to' these reutines,
together with the current status ef users as recorded by the

90 31 13B-1(11/76)

Jcheduler, are used to change the position of each userih
the scheduling status qu(!ues.lt is from these queues that
5e ledions are made for -both swapping und execution. Swaps
are set up by the selection "of a ~igh prior'ity user that is to
be brought into core and 'by pairi"hg' this user with one or
more low priority users that are to he transferred to disk
storage. Simi larly, the highest priority user in core' is
selected for execution. .

SCHEDULER INPUTS

System activities are reported by direct entry to the sched­
uler, which makes changes to us~r status queues through a
logical signaling table. The scheduler records inputs by
changing the user status queues and other information asso­
ciated with the user. In general, a table-driven technique
is used. The received signal is on one coordinate and the
current state of the user is on the other. The table entry
thus defined names the routine to be executed in response
to the given signal-state combination. Srnce the number
of signals and states is large, the table technique aids in
debugging by forcing complete specification of all the pos­
sibilities. Inputs to the scheduler are listed in Table 1.
The scheduler also receives control at execution of each
CAL issued by a user program that is requesting monitor
service. These entries (Table 2), special entries from the
command processors, and entries from internally reported
events drive the scheduling of the system.

Table 1. Event Inputs Received by Scheduler

Event

E:ABRT

E:AP

E:ART

E:CBA

E:CBK

E:CBL

E:CEC

E:CFB

E:CIC

E:CRD

E:CUB

E:DPA

E:ERR

E:IC

Meaning

Operator aborted user. '

Associate shared processor with user.

Activate real-time user. Interrupt has
occurred.

COC buffer available.

Break signal received.

Number of output characters > S l: TB.

TEL ,request (@)@, @Y, or yC).

Cannot find COC buffer.

Terminal input message complete.

Read terminal command received.

Number of output characters = S l: UB.

RAD page available.

Operator errored user.

Vo complete.

Table 1. Event Inputs Received by Scheduler (cont.)

Event

E:I1P

E:IP

E:KO,

E:NC

E:ND

E:NOCR

E:NSYMD

E:NSYMF

E:NQR

E:NQW

E:OCR

E:OFF

E:QA

E:QE

E:QFAC

E:QFI

E:QMF

E:Sl

E:SYMF

E:SYMD

E:UQA

E:UQFAC

E:WU

Meaning
"

I/O started arid now' in p~ogress.

User remo'led from core.

Cannot get requested core pages.

Cannot get requested disk page.

User allowed to open or close file.

No symbiont disk space.

No symbiont fj Ie entry.

Enqueue release - resource available.

Enqueue - wait for resource.

Request permission to open or close file.

User has hung up telephone .

User queued for access (e. g., for access
to tape or disk pack).

Quantum end.

No granules avai lable for use.

Real-time user. Queue for interrupt.

Queue for I/O master function count too
high.

Sleep time for user.

Symbiont fi Ie now available.

Symbiont disk space now avai lable.

User dequeued for access (e. g., for ac­
cess to tape or disk pack).

AllOCAT has refreshed granule stacks.

- Wake-up time for user.

Monitor 15

Tobie 2. Servi ce Request Input to Monitor.

Source, of Inputs

·User program>
" (through mon itor'
service calls)

Command
processor

SCHEDULER OUTPUT

Service Reque.st Entries

1. Terminal input/output request.

2. Input/output service calls for
RAD,disk pack, or magnetic.

. tape.

3. Wait request.

4. Program exit (complete).

5. Core request (for common,
dyn~mic, or specific pages).

6. Real-time services.

7. Program overlay (load and
link, load and transfer).

8. Debug requests.

9. Miscellaneous service requests.
\ .
I

1. Name of system programs to
be loaded and entered (im­
plies deletion of any current
program).

2. Continuation signa I.

3. Special continuation address.

4. Link load-and-go-exit.

The scheduling routine performs two major functions during
the time it is in control of the computer. The first function
consists of setting up swaps between main core memory and
secondary disk storage in such a way that high priority users
are brought into core to replace low priority users that are
transferred to disk storage. The actual swap is controlled
by an I/O handler according to specifi cations prepared by
the scheduler. These specifications are prepared according
to the priority state queues described in the next section.
Given a suitably large ratio of avai lable core to average
user size (greater than 4), the scheduler can keep swaps
and computing close to 100 percent overlapped.

16 Monitor

The second function the scheduler performs. cons,ists of
selecling a user fo', execution according Jo .t~e priority state
queues on~ the. rules for batch processing. The ru Ie is
simple: the highest priority user whose program and dai'o
are in core is .selected. . '

USER STATUS QUEUES

Status queues forln a single priority structure from which se­
lections' for ~wapping and execution are made. The status
.queue'i' form an ordered list with one and only one entry for
each user. The position in queue is an implied bid for
the services of the computer. As events are signaled to the
scheduler, individual users move up and down in the prior­
ity structure. When they are at the high end, they have a
high priority for swapping into c,?re and for execution. When
they are at the low end, they are prime candidates for re­
moval to secondary storage. This latter feature - that of
having a defined priority for removal of users to disk stor­
age - is an important and often overlooked aid to eHi cient
swap management. It avoids extraneous swaps by making
on intelligent choice about outgoing as well as incoming
users.

In addition to these primary functions, user status queues
have other functions such as

1. Synchronizing the presence in core of the user program
and data with the availability of I/O devices.

2. Queuing user programs to be "awakened" at a preestab­
lished time.

3. Queuing requests for entry and use of processors.

4. Managing core memory.

5. Queuing requests for buffers either in core or on
disk.

6. Queuing requests for nonresident monitor servi ces.

A list of the status queues is given in Table 3.

SCHEDULER OPERATION

To select users for execution, the scheduler searches down
a list of the status queues for the first user in core memory.
The highest priority user is served first. Interrupting users
are served before those with an active input message (both
of these take precedence over users with unblocked termi­
na� output), then come on-line compute-bound users and
finally, compute-bound batch jobs. Note that users in
lower states have no current requests for CPU resources.
Note also that as each user is selected for execution, the
status queue of the user is changed to CU. When the quan­
tum is complete, the highest priority queue the user can
enter is the compute queue. Users that enter any of the

State

SRT

SCO

SCt

SC2

SC3

'Tobie 3. Scheduler Status Queues

"Meaning

Real-time execute (0$ priority'S X'BF').

Backgroul)d exec~te ,(X'CO' ~
priority S X'F5').:

Background executi (priority = X'Fli).

Background execute (pri oritY' = .x!F7~)*,

Background execute (priority = X'F8').

SC4 Background execute (priority = X'F9').

SC5

SC6

SC7

sca

SC9

se10

STOB

Background execute (priority = X'FA').

Background execute (priority = X'FB').

Background execute (priority = X'FC').

Background execute (priority = X'FO').

Background execute (priority = X'FE').

Background execute (priority = X'FF').

Terminal output blocked in cor.e. (More
characters than the system limit are ready
for typing.)

STOBO Terminal output blocked. Not in core.

SlOW I/O wait. Users waiting for an I/O that is
in progress to complete.

SIOMF

SW

SQA

SQR

SQRO

STI

STIO

SQF1

Users blocked because I/O master function
count (number of I/O operations in progress)
has reached the system limit.

Users waiting for a specified "wake-up"
time.

Users waiting for service by RBBAT, the
symbior:-t ghoSt.

Users in core and blocked for dynamic re­
source such asswapper page, COC buffer,
symbiont disk page, symbiont table space,
enqueued resource, service by ALLOCAT
(for file granules), or file open or close.

Same as SQR but not in core.

Typing input and in core.

Typing input and not in core.

Real-time user waiting for interrupt.

three highest priority states receive rapid response but only
for th~ Jj·r.st quan!a of service. Thereafter, they share ser­

vice with o~h~rsin the compute queue.

A similar selection procedure is ~sed .to set up users for
swapping. First, the highest priority user in the executi.on

. queue who' is not in core is sele{;ted. an~ .his siz'e require-:
ment (incll:ldi~g -the requ'irement fo~·5hp.red .processors not in
core) is determined.Second~ users are' selected from the
swopout queue until enough spac;e is "freed by these users
and their shared processors to provide f9f the user selected
for swap-in. If a single user il} a ,sfate!b~lbw SC10 (Table 3)
can be found to swap out, then a single rather than a multi­
ple swap is chosen. No swaps oCcur unti I a user that is not
in core enters a high priority queue.

Two lists resulting from this selection are presented to the
swapper. One list contains the user (or users) to be swapped
out and the other contains the user to be swapped in. This
latter list also contains the ~hared processors that must
accompany the user and the current free core poge list.
When the scheduler selects users for swapping, it picks a
high priority user to load into core and the lowest priority
user to remove from core. Priorities are arranged from high
to low, in order of increasing expected time before the next
activation. This ensures that the users that are least likely
to be needed are swapped out first, whi Ie the users most
likely to require execution are retained in core. The swap
algorithm operates so that compute users remain in core and
use all available compute time, while the interactive users
are swapped through the third core slot whenever the fol­
lowing three conditions exist:

1. There is room in core for three user programs.

2. Two users are computing steadily.

3. Many other users are doing short interactive tasks.

Table 4 shows the queue used for selection of users to be
brought in for execution and the queue used for selection
of users to be moved to disk.

Note that the queues CU, lOW, QRO, TOBO, TIO do not
appear in either list. Thus, the users in these states are not
selected either for execution or for swapping.

Two examples of typical interactive use are illustrative of
the scheduling operation.

The first example traces scheduling operations for a simple,
short interactive user request. At the time the request is
typed, the user is in the STl queue. His program, which
has probably been swapped to disk storage, remains there
unti I the cac routines receive an activation character.
Receipt of this character is reported to the scheduler
and causes a change in state of the user to the appro­
priate executable state (SCO-SC10). The scheduler finds
a high priority user not in core and initiates a swap to

Monitor 17

Table 4. Swap-In and Swap-Out Queues

• Swap-In
(and Execution) Swap-Out
Queue Queue

SRT SW

seo STI

SCT STOB

SC2 SQFI

SC3 SQA

SC4 SClO

SC5 SQR

SC6 SC9

SC7 sca

SC8 SC7

SC9 SC6

SC10 SC5

SC4

SC3

SC2

. SCl

SCO

SRT

remove a low priority user (if necessary) and to bring
in the one just activated. On completion of the swap,
the scheduler is again ca lied and now finds a high priority
user ready to run. The user's state is changed to CU, the
program is entered, and the input command is examined by

, the reading program. The cycle in this example is com­
I pleted by preparation of a response line and a request to

the monitor for more input which changes the user's state
to TI again, making him a prime candidate for removal
to disk.

: The second example illustrates an output-bound terminal
. program. This program moves through the state cycle STOB­
SC-SCU as output is generated by the program. The COC
routines signa I when the output limit has been reached,

. thus causing the program to be delayed whi Ie output is
transferred to the terminal. In a typical operation, four
to six seconds of typing is readied in buffers each time the
user program is brought into core and executed. During

18 MooHor

. this typing time, the program is'no! required in'.cc;>re and
the CPU resou~ces can be gi ve~ to other programs •

. I/O SCHEDULING

I/O scheduling is designed to provide good service to 1/0-
~ bound users while keeping the CPU busy with compute­

bound users. The intent is to make the fullest possible
. I utilization of both the CPU and the I/O devices. The

manner in which this is accomplished is described below.

A user that has been waiting for an I/O to co.'TIplete (SlOW)
is changed to an executable state at a priority slightly
higher than a similar compute-bound user when the I/Q
completes. At that time, the execution scheduler inter­
rupts the execution of the compute-bound user so that the
I/O-bound user can execute. The I/O-bound user requires
comparatively little CPU time before initiating another I/O
request and returning to the SlOW state. The compute­
bound user then resumes execution.

It should be noted that the scheduler automatically adapts
to jobs that alternate between bursts of computing and bursts
of I/O.

SWAP HARDWARE ORGANIZA nON

Users are removed from core to a dedicated area of disk
storage (or to several disks in Jarge configurations) when
core is required for higher priority users.

Bit tables are used to keep track of the availability of eci~h
sector on the disks. In these tables, a zero is used to indi­
cate the sector is in use (usually assigned to a user) and a
one is used to indicate the sector is available. Users are
assigned a suffi cient number of page-size sectors to accom­
modate their current use. The assignment is done in such a
way that command chaining of the I/O can order the sectors
to be fetched for a single user with minimum latency. That
is, each user's pages are spread evenly over the set of
avai lable sectors on the disk to w.hich he is dedicated so
that data wi" be transmitted in every disk sector passed
over when the user is swapped.

The records of disk sectors associated with each user are
kept in the user's job information table (JIT), which is kept
on disk when the user is not in core. The disk location of
the JIT and the user's disk address are kept in core by the
scheduler. The disk layout is such that sufficient time is
available after the user's JIT arrives from the disk for the
system to set up the I/O commands for the remai~der of
the user.

The amount of disk ~storage assigned to swapping is a
parameter ·of SYSGEN.' Thenur'nber o(on-nne ll.sers that
the system can accommodate is fiini ted by the size of disk
space allocatep for swapping and the total size of active
on-line users. .

The allocation scheme for syst~ms. which h~ve fHe space
allocated on both RADs and disk ,packs is described in the
following paragraphs.

For the sake of overall performance, the RAD is preferred
for frequently accessed system information and temporary
files used by the major processors. Special users who
need high performance on special files may specify RAD
preference.

All of the account directory and all files from :SYS are as­
signed to the RAD. The first granule of each file directory
is assigned to disk pack but any additional granules are as­
signed to RAD. All star or id files and all scratch files
(opened OUT or OUTIN with REL) prefer RAD. Random
files with no user stated preference and all other files and
their indexes prefer pack. These pack preferences may be
overridden either by the operator keyin 'PREFER' for all
files or by the user specification of NOSEP and DEVICE
for individual files.

Briefly, the effect of authorization and defaults upon the
allocation is: If not enough space is avai lable on the pre­
ferred device, the other device will be used if space is
available there. The exception to this is random files with
user specified preference. In this case, if space is not
available on the user specified device, the file is not al­
locoted and an error is returned to the user. Also, within
the authorized limits, temporary files may use only tempo­
rary authorization and permanent files may use only perma-

. nent authorization.

In general, the rule for authorization s~ould be: A large
amount of temporary RAD and disk pack space should be
authorized for all users and the amount of permanent disk
space should be individually authorized by need. Very few
users should be authorized permanent RAD space.

There are four in-core buffers for types of space to be al­
located. Three are for granule allocated devices:

1. RAD PFA (permanent fife storage).

2. Pack PFA (permanent fi Ie storage).

3. PER (peripheral symbiont storage).

The fourth is for cylinder requests. These buffers are used
to satisfy requests for all purposes except directories, random
files, and PSA (permanent system storage and swapping).

Due to the system configuration and SYSGEN, at most
. six sets of devices can be created:

1. RAD all P,FA (PFA RAD first>.

2. Pack 01./ PFA.(PFA pock firs~).

3. All PER (PER first).

4. RAD PFA plus PER and/or PSA (PFA RAD second,
·PER second).

5. Pack PFA plus PER and/or PSA (PF~ pock. second,
PER third).

6. PER plus PSA (PER fourth) •.

Granules are selected for the in-core buffers from one of
the six sets of devices starting each device at sector zero
and allocating from all the devices within the set simul­
taneously (i.e., round-robin). The preference in choice
of sets is noted above in parentheses. All devices of a set
wi II be depleted be·fore the next set is chosen.

Cylinders for the in-core buffer are allocated starting at
cylinder zero of the first (lowest OCT index) cylinder al­
located device. Each device will be depleted before the
next is used.

Random files are allocated starting at the last sector of the
last (highest OCT index) device of the proper type. The
cylinder allocated devices are treated as one continuum
of space for random files. They need not be contiguous in
the OCT table and any file may cross a boundary (even a
two cyl inder file). Private random files are allocated in
the same way.

PROCESSOR MANAGEMENT

CP-V processors are considered shared processors when they
are written in such a way that they are pure procedure and
are described as such when they are added to the system.
(User-associated data oreas are initialized at first entry.)
.A shared processor has the following special characteristics:

1. It has dedicated residency on sw~p sto~age established
at system initialization or via DRSP.

2. A single coPy is shared by all requesting users.

Monitor 19

MEMORY LAYOUT

The system makes full use of address mapping hardw.a~~,
access protection, and write locks in allocating available
physical core pages to users. Physical core pages are allo­
cated to users at their request. Use of the map obviates
the need for program relocation or physical moves. Full

•
ction is provided for one user from another. All pro­
s and the monitor itself are divided into procedure and

data. The procedure area is protected by wr1te-locks or
access codes, or both, against inadvertent stores.

The central features of the use of write-locks to protect
master mode programs are as follows:

1. The monitor operates with a key of 01 and may store In

. .0. Its, own data area (LOCK = 01).

,:h." .Any' batch, on~I'ine or shared processor code
, (LOCK = (0).

, , . .;
It may not stor.;in, its own procedure (LOCK = 11).

... .
2. KeYs of 10 a~d ",,11 "are 'never u~ed, nor is the lock of 10.

3. Write-Io~ks ate injtiaJi-zt:,~pnty i~e .at system start-up
and are not changed thereafte'r ex~~t when running
under control of Executive Delta where they are used
to enable data breakpoints.

4. On the Xerox 560, write keys are four bits long and
-apply to the lOP memory writes as well as CPU write
loperations. To take advantage of this feature, the
Xerox 560 I/O system always 'uses a key of 1000 whic~
does not match any of the locks. This means th~t no
I/O operation can accidentallyoverwrite the monitor or
its dato since the lOPs can only write into memory with
locks of zero (the user area). Also on the Xerox 560,
certain monitor buffers which are partof the monitor data
area (usually with lock 01)are grouped together and the
pages containing those buffers are set to a lock of 0000.
Except for this difference, the rest of the locks are
~xactly the sam€ as for the Sigma computers.

The access code on 'w"jrtual memory pages controls references
made by slave mode programs (user programs and shared pro­
cessors). This cede is retained in the JIT of each user and is
loaded into the hardware access protect registers (which are
part of the virtual mapping hardware) when the user gains
control. Write access to JIT and other lob context areas is
given to TEL, CCI, LOGON, and any installation-defined
command processors.

The layout of virtual memory that applies to user programs
and ordinarily shared processors is shown in Figure 2. Al­
location of the avai lable area depends on the type of
u~ that is running and the attributes of the load module

20 Monitor

.to .be' exec'uted. A !locatio'; T YO€< II is used when O'GOI"e

J lhro~y or debugger is ossoci(lt~d o~ when the load modult;
to't,eexecuted 'has beenbu,h by, link. In all othercosei,
a II oc;ati on of the avoi lableareo 1.5 as shown fn Type I for
b"Otcn use'rs, ghost fobs,_. Qnd 0';--1 ine usen executing in the
extended memory m6de~ .

Core addresses shown are those appropriate for a typical
system but more (or less) core may be established for the
resident monitor at SYSGEN time depending on installation
needs. More (or less) area may also be desirable for the
library area and for the job context area to accommodate
more buffers. These bounds may also be adjusted at SYSGEN
time. The boundary at which the one-pass loader (Link)
places the user program is also adlustable.

Virtual pages not currently allocated to the user are mapped
into a resident monitor page that is write-locked, (the ac­
cess code is set to no access). Thus, slave mode programs
are denied access through the access code, and attempts to
store at these virtual addresses by a master mode program
are protected by write locks.

Typical layouts of physical memory are shown in Figure 3
for Sigma systems and in Figure 4 for Xerox 560 systems •
Although these are similar to the actual layout, they should
not be assumed to be exact.

SYSTEM INTEGRITY

The monitor has a number of routines that have been in­
cluded t~ g~ciranteesystem integrity. The objectives of
these routines are, in order of importance, (1) to provide
the highest possible security for user files even in the event
of total system fai lure, (2) to provide automatic high-speed
re'covery in the event of a machine or software failure, and
(3) to record sufficient information to isolate errors and
failures caused by either hardware or software.

The major features of the CP-V system integrity routines are
as follows:

1. Detection of malfunctions by hardware examination
and software checks wherever the checks have been
shown to enhance hardware error detection. Recovery
from these malfunctions is through retries, operator as­
sistance, etc.

2. Logging of all malfunctions, including recovered errors
and permanent failures.

3. Protection from hardware fai lures.

4. Use of on-line exercisers to provide for repair or ad­
Justment of peripherals without taking the CPU down.

5. File backup and recovery facilities to minimize the
probability of losing user files, and in case of file
failure, to facilitate complete recovery of the file sys­
tem with a minimum of loss.

User
access

Map

User
access

Contents

Access
codes

o 32K 35K 40K 112K 128K
.. 1 -'.- I .--

Monitor or-ea Cont~xtarea. AV!Jilable orea
--

, Mon~tc)r
Type I. User program area .

Dato Procedure
overlay

Jlfs Buffers

I Special .proce~sor area 'T?pe fI.· 'User pr~grom area ,

I~ ./ + ~ None .1.
L read (first page)

.\ None see below

read (first page)

ta
allocated
physical
page

ta allocated physical page or to a protected locked monitor page ---,------... ·-il

40K

Progrom
dato

User program area
(load module built by load)

112K or
128K 40K

Common
pages

Program
data

91K

User program area
(load module built by link)

92K 112K

Procedure

rwrite1 read rexecute+write +- none +write1

. \ .
~ write -+ none -+write--l read l-- execute~

Context Area Available Area Special Area

Jab information
File blocking buffers
File index buffers
Coop buffers

User programs, data,DCBs, and symbol tables
Ordinary shared processors including

Special shored processor and data:
Link
Delta
Tel
libraries

Root segment
Initial data
Overlay area

none - no access of any kind permitted
read - read access on Iy

execute - execute or read access
write - write, execute, and read permitted

Figure 2. Typical User Program - Virtual Memory Layout {not to scole}

Keys 01

Resident monitor

Data

Locks 01

Unused keys: 10, 11
Unused locks: 10

Program

11

00

On-line iobs
Batch ic:>bs
Shared processors

00

Figure 3. Typical Memory layout for Sigma Computers (not to scale)

Monitor 21

...-"

Keys 0001 0000

Resident monitor All user jobs and processors

Data Vo buffer Dat9 Program

Locks 100011 0000 I 0001 1 00111 0000

(The VO system always uses a write key of 1000.)

Figure 4. Typical Memory Layout for the Xerox 560 {not to scale}

6. Automatic recovery following a system failure with
reasonabl e speed consistent with fi Ie security and the
recording of information for later ancdysis.

7. Faci lities to provide for analysis of system crashes. In­
formation includes simple classification of failures as
well as full information for both customer engineers
and system programmers.

8. For the Xerox 560 - on-line interface for remote
assistance.

ERROR DETECTION AND RECOVERY

An effective operating system must be able to detect and,
whenever possible, to correct errors. It must a Iso be cap­
able of restarting the system if necessary. CP-V uses a
combination of hardware and software checks to efficiently
meet these goals.

Hardware error protection features include memory protec­
tion against accidental overwriting of monitor and user pro­
grams, power fai I -safe interrupts that ensure automati c
restart in the event of power fai lure, memory Parity check­
ing, I/O read and write verification, and a watchdog timer
to avoid instruction hangups. Detected errors are reported,
logged, and if possible, recovered directly. Catastrophic
failures cause an automatic system recovery if at all pos­
sible. Those fai lures whi ch can be isolated to a single user
cause on Iy that user to be aborted. Some hardware errors,
such as loss of a memory power supply, lead to system
shutdown.

Software consistency checks, some of whi ch are performed
optiona lIy on the setting of a console sense switch, check
the integrity of the software at many critical locations in
the system. These checks detect problems before they are
allowed to go beyond a recoverable point. When an incon­
sistency that is catastrophic to the system is detected, the
current users are logged off and all open fi les are closed.
The system is then automatically rebooted for the fastest
possible restart.

22 Monitor

ERROR AND FAILURE LOGGING

Malfunction messages are maintained in a special fi Ie by
system integrity routines. Messages are placed in this file
whenever malfunctions are detected by the various ports of
the system. Hardware malfunctions that are recorded in­
clude such things as tape errors, card reader errors, memory
-parity errors, and illegal instructions. Software malfuncti ons
that are recorded include the failure of software checks
on RA D or disk addresses contained in index blocks and
improper linkage of linked file blocks. In addition, 0

software recovery from a seek failure is recorded in this
fi Ie {as a 757F code}.

The error messages gene;ated throughout the system (report­
ing both hardware and software errors) are placed initially
in in-core buffers and then are transferred to a specia I fi Ie
(actually a linked list of granules)~ This transfer is initiated
whenever an error count threshold, or time limit is reached.
This special fj Ie is then transferred to an ordered keyed fj Ie.
(ERRFILE) by the standard system ghost processor ERR:FIL
which is automatically awakened by the system.

ERROR LOG LISTING

This keyed fi Ie (ERRFILE) may be listed and sorted by the
processor ELLA whi ch a /lows the Customer Engineer to dis­
play and search the error fj Ie for patterns of errors to aid in
preventive maintenance for the system.

ON-LINE DIAGNOSTICS AND EXERCISERS

On-line diagnostics and exercisers may be called when
there is a specific failure detected by the hardware or soft­
ware, or when a failure is projected through analysis of the
error log by the Customer Engineer. These programs may
also be called by the Customer Engineer when needed for
the test or adjustment of the card reader, card punch, line
printer, magnetic tape, or other devices.

REMOTE DIAGNOSTIC ASSISTANCE

On the Xerox 560; orl-line diagnostics and certain on-line
debugging processors (ANLZ, Delta, and ELLA) may" be
utilized via the Remote Assist Station (RAS) interface.

After control is obtained from the local' operator, c"ustomer .
engineers and/or diagnostic programmers at remote locations
may access the system via this interface without interfering
with the on-line cae users and without using any of the
normal communication equipment. By evaluating the sys­
tem under normal operating conditions, many software errors
and hardware malfunctions ~ay be detected and eliminated
expeditiously with a minimum of computer down time.

FILE MAINTENANCE

CP-V provides a variety of processors designed to maintain
a reliable backup of the file data base. These processors are
summarized in the CP-V/SM Reference Manual, 90 16 74,
and are described in detai I in the C P-V lOPS Reference
Manual, 90 16 75. The processors provide the ability to
save and restore large volumes of files very quickly, to save
and restore entire private and public disk devices at device
speed, to handle user initiated backup of fi les, to restore
the allocation tables for public disks after a system crash,
to restore the allocation tables for a private disk pack after
a crash which affected the pack, and to restore granule ac­
count information in the :USERS fi Ie.

AUTOMATIC RECOVERY AFTER SYSTEM FAILURE

The CP-V monitor performs consistency checks on the
results of hardware operations, checks intermediate results
of ~perating system software functions, performs checks and
balances at appropriate interfaces between the operating
system's modules, and monitors itself for unexpected trap
conditions caused by the hardware or operating system soft­
ware. A software check code is assigned to each type
of failure that the monitor may detect.

Some of these software check failures result in a momentary
delay in service to all but the current user for whom the
operating system is performing a service. In such case,
the current user's job step is aborted, core is dumped to a
file for later analysis and display, and normal operating
then continues. The remaining software check fai lures are
handled by the system's recovery routine.

The recovery routine performs the fol lowing functions:

1. Displays cause of failure.

2. Tokes a full core dump for later analysis.

3. Closes all open files with default options.

4. Packages or releases all partial symbiont files.

5. Closes common TP io'urnal if transaction processing is
being used. .

6. Saves in-core transaction processing files.

7 •. ' P.aekag~~ 'error log.

S.. Informs usef"$ of interruptioh.

9. Sa~es time, data, error log pointers, accounting infor­
mation, symbiont file directory, public disk 'granule
usage map, and executive communication.

10. Restarts system and restores items saved above.

When functions cannot be performed, they are noted on the
operator's console. If the function is considered minor, re­
covery continues. If it is connected with file operations,
the file identification is noted and recovery proceeds.

The recovery routine described above Occurs automatically
with a minimum delay (a few seconds) in system availability.
Operator initiation of this recovery function is also allowed,
providing for the event that the system foils by not respon­
ing to any operator key-in or user service request.

When the recovery routine executes, it is in~ependent of
all monitor services and functions and requires only that a
small recovery driver be intact in memory. This driver
reads the main recovery module into memory from the system
swap device, overlaying the pure procedure portion of
CP-V. Certain monitor system tables are also required in­
tact for successful recovery. These table~ are verified
before proceeding. If the recavery process cannot be com­
pleted, the operator is instructed to initialize the system
from the master system tape and restore fi les and backup
tapes.

CRASH ANALYSIS

In the event of a recovery or single user abort, one of the
recovery functions is to dump the contents of core memory
into a special file in the :SYS account. This information is
saved for later analysis by a system programmer using a
special debugging program, ANLZ.

The ANLZ program may be called by the operator or system
programmers to run as a privi leged ghost, on-line, or batch
job. The ANLZ program is also cal~d automatically
as a privileged ghost job by the recovery routine as one
of the first jobs following a recovery or the first job fol­
lowing a single user obort. In any mode, ANLZ is command
driven (except in the ghost mode following a recovery).
It responds to commands that selectively display monitor
tables, examine memory, and compare the dump with
the running monitor. (Reference: Chapter 4.)

Monitor 23

. SYSIEM TAPE FORMAT

A CP':'Vcsystem t~pe confoin&,the following ~Ieme~ts:.

1. Bootstrap,l oader.

2. Root for on absol ute mon i tor.

3. General information record concerning this system
tope.

4. Other monitor segments (XDELTA, ALLOCAT, GHOSTl,
FIX).

5. Monitor overlay segments.

6. RECOVER.

7. Tope label information.

8. Fi les for a II system load modules and other needed fi les.

9. Patches and GENMD commands.

The general arrangement of the information on a master sys­
tem tape is shown in Figure 5.

PATCH DECK STRUCTURE

Patch decks have the following structure:

1. The following two types of patches:

a. Delta format patches for the monitor root and its
overlays.

b. Sym,bol definition patches.

The monitor root _patches can appear anywhere within
the patch deck. The overlay patches must be in the
same order as the system tape structure. Symbol defi­
nitions must precede the patches in which the symbol
is used. Patches to the reconfiguration processor must
precede the boot-time reconfiguration and· partitioning
commands and must be read from the card reader when
the'card reader is used during boot-time for patching

f:
purposes.

2. Boot-time reconfiguration and partitioning commands.
These are optional, but if they are used, they must pre­
cede the first overlay patch. It is also advisable to
read them from the card reader.

3. A card that contains an asterisk in column one. This
card terminates the monitor patches and boot-time re­
configuration and partitioning commands.

4. The following two types of patches (which may appear
in any order):

a. A GENDCB command to assign the account, a
password, serial number, and type of tape drive
fo:. the boot tape.

24 Bootstrap and Patching Operations

. h. ' A grQuptXGENlv\D comm~nds' and GEN MD patches
to the processors '~ontQined on the tope.

5. 'A!EOD command (th~ '(inal command of the patch
.deck)., '

In additi9ilt there are' two types of cards that may appear
;tmywhe~' within the patch deck (including the GENMD
portion). These two types are the conditional patch control
command and the comment card.

No patch, command, or comment may contain more than
72 characters of information.

When the patch deck is read, it is retained by the system in
a file called PATCH in the :SYS account. This file can be
examined using the PCl processor. It may also be assigned
to M:PATCH and DEFed onto the PO tape.

The function and format of Del ta fonnat patches, symbol def­
inition patches, reconfiguration and partitioning commands,
GENDCB commands, GENMD commands, GENMD patches,
conditional patch control commands, and comment cards
are described in the paragraphs that follow.

DELTA FORMAT PATCHES

Delta format patches are used to patch various segments of
the monitor. The format of a Delta format patch is:

[segname]!Ioc/value[(old value)]/comment

where

segname is the name of the segment to be patched.
The current segnames and the order in which they
must be patched are shown in Figure 6.

If a segname is present, the loc field must represent
a location in the corresponding segment or the loc
field (and value field) must be null. The latter
type of patch would have th,e format.

segname/ / (the third slash is unnecessary)

and must be the first patch with its particular seg­
name. (An example of this form of patch is given
in the 'Conditional Patch Control Commands'
section below.)

Example:

OPEN// START THE OPEN PATCHES
OPEN/OPNH+.52/B PATCH/
/PATCH/LW,13 TABLES+.74/

Tape
boot

, M:MON r~Qt ' Syste,m, M:MON, r.oqt patches
'(op~ion(1tr'" ",' 'records. "information

'r' '!', ,',', . . "-...J----------..
ALLOCAT, FIX, GHOST! ,~Hor overlays, and RECOVER
core image records and (optiOnal)·patches for them.

Record sizes

Head

Data

Patches

First file
File information for ::::=

lost fi Ie :::;: last file \~ :EOF

The tape bootstrap is 22 words long. Patch records are 20 words
long. An other records are 512 words long. The figure indicates
groups of such physical records.

Head portion of load module.

Protection type 0 portion of load module.

Patches are included on the tape where shown if they exist in the
fife assigned to the M:PATCH DCB when OEF creates the system
tope. The first group of M:M ON root patches follows the Exec
Delta data records. Any others are placed among segment patches
according to their order in the patch file. The last record of each
group of patches on the tape is the first patch for the next set of
segment patches. The second through the last patch for a segment
follow the segment to which they will be applied. GENMD patches
follow the lost of any patches following the RECOVER patches.

Figure 5. Format of Master System Tape

Patch Deck Structure 25

·'***I,.1t,":Ir.ti,/, iIt 'Ii~',*,* **"" *.K"" *
C f' - v'

SY'STEM GENERATED ON:
11 ;DO Al~G 16. '7 (,

VERSION NO; IS;' , COO
* 0',1/* ** I< * Jl! *.1<* "* ti'. *":*'* ~"

PATCH SEGMENT NAMES:

AI.LOCATO
ALI.OCAT I'
FIXO
FIX2
FIXl
GHOSTlO
GHOSTl2
GHOSTIl
CLOSE
DEBUG

ENQOV
KEYIN
LDLNK
LTAPE

, MISOV

MPC92l0
MPC9310
MULOV
OPEN
OPENTP
RMAOV
RTOV
STEPOVR
TPOVl
TPOV2
UMOV
RECOVER

(ROOT-)
(DATA)
(PROC)
(DATA)
(DCBS)
(PROC)
(DATA)
(DCBS)
(PROC)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)
(DATA)

""****************

Figure 6. Segment Patching Order

If no segname is present, any location.between
1016 and FFF016rTlOybepotched. Such patches
may appear anywhere within the patch deck.

loc is a Delta format symbolic location, possibLy
with offsets.

value is the Delta format value to be inserted at
loc.

old value is the Delta format value of the previous
contents of foe.

Example:

/IORT+.F8/PSM,9 TSTACK(PSM,6 TSTACK)/ FIX SIDR #6646

If a patch command is in error (e. g., has on illegal char­
acter, an incorrect old value, a value occupying more than
one word, or an invalid loc value), it will be typed on the
OC device. The operator must determine what was wrong
and correct the problem.

If the error is apparent from examination of the patch, it
can be corrected and the boot process restarted.)f desired,
the system may be examin~d with Executive Del to, which
is now in control and requestil)g commands at the operator's
console. The patch in error may be corrected from the
operator's console using Delta by entering the patch

Patch Deck Structure

correc t i o~ m'od e by key i n9 -, 8 (use right bra eke t(8) on
the Xerox 560} and then the correct patch in the form given
'above. After receiving the correct patch, the system re-

. SLImes reading patches.'

PATCH nECK SYMBOL TABLES

The Delta formot:symbolic values that are recognized in
patches are assembled by the system tope definitian proces­
sor, DEF, from the REF/OfF stocks of the pctchable modules
using these items:

1. A II DSECT names.

2. A II DEFs ending in a colon (the colon is removed in the
patch deck symbol table).

3. The first UDEF after each CSECT unless a colon DEF
intervened •

4. Patch segnames.

For M:MON only, all lDEFs are also included. The sym­
bols obtained from M:MON and XDElTA are available to
XDELTA at any time. Those from other modules are avail­
able only whi la that module is being patched. DEF lists
the symbols that are included as the "ables are created.

In addition, two special symbols are available during the
patching process.

The first is the symbol @ whose value is equal to the next
available location in the patch area of the monitor. That
is, it is initially equal to the monitor symbol, MPATCH,' and
its value is incremented by one each time a patch is encoun­
tered whose loc field is equal tothe current value of tQ.

The use of the special symbol @ frees the user from having
to allocate space in the PATCH area of the monitor since
Executive Delta will automatically relocate the patch area.

Example:

The following two patch decks ore equivalent:

/rORT+.FS/B @/ /rORT+.FS/B PATCH/

/IORT+.FE/B @+1/ /IORT+.FE/B PATCH+1/

/@/Lr,3 12/ /PATCH/LI,3 12/

/@/CB,3 5/ /.+1/CB,3 5/

/@/BNE $+2/ /.+1/BNE $+2/

/@/B IORT+.F9/ /.+l/B IORT+.F9/

/@/LI,3 0/ /.+1/L1,3 0/

I@/B IORT+.F9/ /.+1/B IORT+.F9/

The second special symbol is @@) and is used when an even
address in MPATCH is required. The only restriction on this
special symbol is that @@ cannot be referenced while patch­
ing @ (e. g., i@/@,§}/). The results are unpredictable.

90 31 138-2(9/78)

Exomp'le:

IMH+. 64/T PSD t 8 i~'a I
I(d,a /~r-1+ • 65+4 -Id, 2 81
l(il/.17ooooonl

New symbols may be added to thesyntbol table by including
symbol definition patches in the patch deck. Symbol def­
inition patches must have the format

I symbol = value

where

symbol is any Delta format symbol. (The symbol
can be no longer than eight characters.)

value is any evaluatoble expression terminot~d by
a blank.

Example:

#GRUNCH=.D87
/GRUNCH/B GRUNCH+.20/
/ .+1 /B @/
/@/LW,3 TABLES+3/
#JK~
/@/CI,3 10/
/@/B GRUNCH+.50/

/55+.1ES/B JK/

In the above example, the patch at 55+~ lE8 branches to
the instruction CI, 3 10.

RECONFIGURATION AND PARTlnOMI,.6 COMMANDS

These commands provide a means of reconfiguring the system
and partitioning devices and/or controllers at boot-time.
All of the commands begin with a colon (:) and must end
with a period or a trailing blank by at least column 72.
The commands may be specified in any order with the ex­
ception of :ENDwhich must appear last (if it is used).

If no reconfiguration and Partitioning commands are speci­
fied, the system responds as if the :GO command had been
specified •

Reconfiguration always validates the SYSGENed device ad­
dresses. If a device address (ndd) is encountered for which
the n cannot be validated, the following message is displayed
on-the OC device and the boot procedure is terminated.

CANNOT CONVERT In' IN 'yyndd'

where nand ndd are defined in the following discussion and
yy Is the devi co type.

Three of fhese commondS' (: T YPL :'~A~T,' oDd::,REMOVE)
contain the following pa~ometer as port Qf m~i' common8
format:

value (~ometimesreferr~cJ' to as vatu: l'6~d val'ue'2)
I.r, •.• _"' ••

The description of thi~ para':"et~r-isquitedet~iled. To
avoid repeating the descripti-on,severol-times, 'it will be
given here ond references will be made .bac~ ,to this section
in the command descriptions.

The formot of value is dependent on the CPU being used.

For Sigma 6/1/9 systems, volue must be in the format

ndd

where

n represents a controller address and is specified as
a letter. See Table B-2 in Appendix B.

dd specifies the device number. See Table B-3 in
Appendix 8.

For Xerox S60 systems, value may take one of two formats.
The first format is

ndd

where

n represents a cluster number and 0 unit number.

See Table 8-4 in Appendix B.

dd specifies the device number. See Table B-3 in
Appendix B.

The second format cQnsists of four hexadecimal digits which
represent a hardware address in the formot

~,Ij :J ~ ,I. . ""~,~",,..1
where

c specifies the cluster number.

u specifies the unit number.

dd specifies the device number.

:GO This command specifies that the configuration speci-
fied on the system tape is to be used as is. The format of
the command is

:GO

If :GO is specified, : TYPE and :REMOVE commands are not
meaningful and the following me$SOge is output on the II
device:

All :TVPE/:REMOVE COMMANDS IGNORED

Patch Deck Structure 27

:SAVE This command spec.ifies that all device addresses
not chcing~d by :TYPE ,commands are to remain ,as is, except
a~cording to reshiction$ listed in the following description.
The form9,t of the command is

When the :SAVE command . .i$ specified, the following mes­
sage is output on the LL device:

**KEEP ALL DEV. ADDR. AS IS EXCEPT FOR :TYPE/

:REMOVE CHANGES

When the :SAVE command is used, only those device ad­
dresses which are different on the target machine from that
of theSYSGENed system tope need bechonged by the :TYPE
command. All others remain as SYSGENed except when a
:TYPE command redefines one ar mora device addresses far
a specific device ~ype where the SYSGENed IOP/contraller
or cluster/unit addresses are equivalent within the device
type. In this case, every equivalent lOP/controller or
cluster/unit address within that device type must be defined
by :TYPE commands whether or not the device address needs
to be changed or the undefined ones will be removed fram
the system. The :REMOVE commond may also be used to
remove SYSGENed devices. The :SAVE command must
precede any other reco~figuratian commands.

I
I

When : SAY E is not sped fi ed, a II d ev ice add resses must be
specified by :TYPE commands unless no :TYPE commands
are used. Any SYSGENed devices for which addresses are
not defined by :TYPE commands are removed from the sys­
tem configuration {and cannot be returned to the system
configurotion without rebooting}.

:TYPE The :TYPE command defines a device type, its
model number, and its new device address or addessses. The
format of the command for single access device definitions
is

: TYPE device, value[, value). ••

and the format for dual access device definitions is

:TYPE device, (value
l
, value

2
)[, (value

l
, varue

2
») •••

where

28

device is a six character field. The first two chor-
acter$ specify the device type (e. g., CR) and the
last four characters specify the device model num­
ber in hexadecimal.

value specifies the device address in the format de-
scribed at the beginning of this section. The Inum­
ber of addresses depends upon the numberof devices
of that device type which are on the target machine
or which need address changes {when :SAVE is.
used}. For duo f access devices, value 1 specifies
the primary path address and value2 specifies the

alternate poth addreis. When a device address
. change is required for (I specific device type, 011
addresses m,,!st be .specified even if no change is
necessary, or those not specified for the device
type will be removed from the system.

The modei number ,is verified as a legitimate model number
by searching the M:MODNUM table. (See the SYSCON
chapter in the CP-V/SM Reference Manual, 90 16 74.)
When found, its corresponding controller model number is
obtained from the M:MODNUM table. Thedevice/controller
model numbers are then used to check if this combination is
the some as that which was originally SYSGENed for the
given device. If not the some, all simi lor devi ce/controller
model number combinations in M:MODNUM are used for this
validation. As an example, if M:MODNUM contains the
fol lowing entries:

DevIce Model
Number

7120
7120
7121
7121

Controller Model
Number

7120
7121
7121
7120

and the SYSGENed cambination is

7120 7121

then the command :TYPE CR7121, •••• will cause the fal­
rowing device/controller combinations to be checked with
the Indicated results:

7121/7120
7120;7120
7121/7121
7120/7121

not valid
not valid
not valid
valid

:REMOVE This command removes device{s} or control-
lor(s) from the system. Removed devices and controllers
cannot be returned to the system without a cold tope boot
creating a new fi Ie system. (If a device or controller is to
be removed at baot time, but returned at a later time with­
out changing the file base, the device or controller should
be removed with :PART cords.) The format of the command
is

{
value } r, varue J

:REMOVE CONT ,value l.,CONT ,value

where

value specifies the address of the device ar contror-
ler to be removed in the format described at the
beginning of this section.

CONT specifies that a controller is to be removed.
When a controller is removed, all devices on that
controller are orso removed unless the controller is
duol access. When the controller is dual access,
only the path specified by value is removed unless
the other path to the device is already removed ar
doesn't exist (Le., single access within dual chan­
nel). In the latter case, all of the controller's
devices are also removed.

The number of devices or controllers that may be specified
is limited only by the length of a cord (80 characters).

90 31 1~8-2{9/18)

In the following example, four disk packs were SYSGENed
and the target system is to have only two disk packs, one
public and one private.

:TYPE DP7242.BFO.BFl,BF2 .
:REMOVE BFI

SYSGENed Result of Result of
Disk Packs ':TYPE Command :R'EMOVE Command

AFO - public BFO - public BFO - public

AFl - public BF 1 - public . removed

AF2 - private BF2 - private BF2 - private

AF3 - private removed removed

:PART The :PART command specifies device{s} or con-
troller{s} that are to be partitioned from the system. A de- ,
vice or controller is partitioned as if it had been partitioned
by the SYSCON processor and can be returned to the system
via SYSCON without re-booting the system. (Refer to the
SYSCON processor description in the CP-V ISM Reference
Manual, 90 16 74.) This is useful when a system is being
booted and a device which WaS SYSGENed to be part of the
system is currently unava i Jab Ie but wi" be ava i lab Ie prior
to the next system boot. COCs and Teletypes are not af­
fected by this partitioning. The format of the :PART com­
mand is

: PART jvalue I [,value J
CaNT ,value ,CaNT ,value •••

where

value specifies the address of the device or con-
troller to be removed in the format described at
the beginning of this section.

CaNT specifies that a controller is to ~ parti-
tioned. When a controller is partitioned, all de­
vices on that controller are also partitioned unless
the controller is dual access. When the controller
is dual access, only the path specified by value is
partitioned unless the other path to the device is
already partitioned or doesn't exist (i.e., single
access within dual channel). In the latter case,
all of the controller's devices are also partitiolJed.

A device partition request causes all devices which have
identical device addresses' to be partitioned.

The number of devices or c~ntrollers that may be specified
in the command is limited on'Jy by the length of a card
(80 columns).

Example:

A system was SYSGENed to have four 9-track tape drives
but two are down for maintenance when the system is booted.

:TYPE 9T7322,A80,A81,A82,A83

:PART A82,A83

90 31 13B-1 (11/76)

:END , The :END command defines the end of the set of
reconfigura.tion and partitioning commands. The comma'1d
is optional because the occurrence of 'either the first noriroot
patch or an asterisk (*) comm~nd would also-indiCa'te the
end ,of reconfiguration and partitioning commands.

The fonnqt of the ~ommand'is,

. :END

When the end of reconfiguration and parfitiqning commands
is encountered, all :TYPE command definitions are pro­
cessed first, then all :REMOVE requests, and finally all
:PART requests.

When all of the commands have been processed, a check is
performed to determine if the original SYSGEN or the re­
configuration for multi-unit controllers and their devices
reside in non-conflicting input/output queueing channels.
This means that an lOP/controller or cluster/unit in one
queueing channel cannot have an equivalent lOP/controller
or cluster/unit in some other queueing channel. The follow­
ing error messages will identify all such conflicts and the
reconfiguration process will then change the queueing chan­
nels to be equivalent:

****QUEUEING CONFLICT BETWEEN OCT ii AND OCT jj

QUEUE FOR DCTjjCHANGEDTO THAT OF DCTii

where

ii is the DCT index for the fi rst devi ce •

jj is the DCT index for a subsequent device.

RECONFIGURA TION AND PARTITIONING EXAMPLE

In the following example, a CP-V system was SYSGENed
for four different hardware configurations. These configura­
tions are referred to as the 560X, 7T, 70, and 7E. A set of
reconfiguration and partitioning commands was generated for
each machine with the set of commands for each machine
being bounded by a conditional patch control command.
The four sets of reconfiguration and partitioning commands
exist in the patch deck. The one set that is to be used for
a particular boot is selected by a set of conditional patch
control commands such as the following:

'560X =0

'n =0

'70 = 1

'7E =0

The above commands indicate that the 70 machine is to be
booted. Figure 7 lists the entire set of devices that were
SYSGENed for this example. Figure 8 lists the set of recon­
figuration and partitioning commands which were ignored
because they were for machines not being booted. Figure 9
lists the set of reconfiguration and partitioning commands

Patch Deck Structure 29

30

s Y S G ENE 0 r R N F J G ~~. T J 6 N

~* •• ~**4*******************.**.**.***********~***~.********.**.**.**~~*******.
o E V ICE RES (j U R C E C6 'N -F .1', G U R A. T 1, B ~

OEV.T¥P~: CEV.~O :OEV.ADDR :DCT~CtT: PUB/PRIV : TYPt t R161 : G~~ERAL, INF6RMATIBN .. ~. ___ .. ___ ~_~ __ ~_~. ___ ~ __ . __ ~~_~_.~._~_._ .. ~ .. _._ .. ~._~_~D_ ... _~_. ______ _ ..
Ty7012
CR11~0
CP716C
LP7~4+5
LP7~4t5
DC7212
DC7212
OC7232
OC7232
9T7322
9T7322
9T7323
9T7323
9T7323
9T7323
DP724t2
OP724t2
OP724tZ
OP7242
DP7271
DP7271
DP7271
DP7271
DP7271
DP7271
DP7271
DP7271
DP7271
DP7271
R8FFFF
XP1200
ME7611
ME7611

TyACl
CRA03
CPAC~
LpIo02
LP,AOF
DeBFa
DeeF1
DeCFo
DeCF1
9TA80
9TA81
9TA82
9TA83
9TA84
9T"85
DPD80
DPD81
DPDS2
DPDS3
DpAEO
DPAEl
DPAE2
DPAE3
DPAE4
DPAE5
OPAE6
DPAE7
DPAFO
DPAFl
RBA16
XPCOD
MEAI0
MEAll

0001
0003
OOC~
0002
OOOF
01 Fo
OlF 1
02FO
02Fl
0080
0081
0082
0083
0084
0085
0380
0381
0382
0383
OOEO
OOEl
00E2
00E3
OOE~
00E5
00E6
00E7
OOFO
OOFl
0016
0200
0010
0011

01.01
02·02
03-03
01t-:>4
05.0~
06·06
07·06
08 .. 07
09.07
OA,,08
OB-08
OC·08
OD-')8
OE-08
01='·08
10·09
11-09
12.09
13 .. 09
14t-OA
15.0~,

16 ... 0A
17 .. 0A
l8-0A
19-0A
lA-OA
1 B.OA
lC.OA
10-0A.
lE·OB
1F-OC
20.00
21-0£

PUB
PUB
PRIV
PRIV
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB
PUB

TY
CR
CP
LP

DC

91

DP

RB
XP
ME

06

02

NBr-PARTITIBNABLE
NB.PART-OEV .SYM
SYMBJf1NT
Ne.PART-D£V ,:SYM
SYMBIBNT
NBT·PARTIT16NABLE
~eTp.PARTITI6NA8LE
N8T·PARTITIBNABLE
N8T·PARTITIBNAB~E
NS-PART-C6NT
NS-PART·CBNT
NB·PART·C6NT
NB·PART-CBNT
NB.PART.C6NT
NB·PART-CBNT
N8T-PARTITIBNABLE
N6T·PARTJTIBNABLE

NB.PARTcDEV
N6T-PARTITIBNABLE
NBT'PARTITIBNAB~E
NBT·PARTITIBNABLE
N6T·PARTITI6NABLE
NBT·PARTITI6NAB~E
NBT·PARTITIBNABLE
N6T·PARTIT16NABLE
NBT·PARTITI8NABLE
N8T·PARTITIBNABLE
N6T'PARTIT16NABLE
NB·PART.DEV
NB.PART.CBNT ISYM
N B T • PAR TIT IBN A B'L E
N6T·PARTITIBNABLE

~************.***********.**.*******

Figure 7. Device Resource Configuration from SYSGEN

.•••••••••••••••••••••••••••• #7E
•••••••••••••••••••••••••••• ISAVE
•••••••••••••••••••••••••••• ITYPE RBFFFF,A14
•••••••••••••••••••••••••••• ITyPE OCBFO
, ••••••••••••••••••••••••••• ,REM6VE A8~A85
••••••••••••••••••••••••••••• TyPE OP7271,090,091
•••••••••••••••••••••••••••• ITyPE OP72~2'080'081
•••••••••••••••••••••••••••• I£NO ,.
•••••••••••••••••••••••••••• #7T
•••••••••••••••••••••••••••• ISAVE
•••••••••••••••••••• o ••••••• IREMeVE ceNT,080
•••••••••••••••••••••••••••• IEND ,.
•••••••••••••••••••••••••••• #560X
•••••••••••••••••••••••••••• :G6
•••••••••••••••••••••••••••• I~NO

Figure 8. Reconfigurotion and Partitioning Commands that were Ignored

Potch Deck Structure 90 31 138- 1 (11/76)

which were u~"ed in the boot rroces!> because the 7D was
selected. Figure IO lists 'the set bf de~ices for the 7D con­
figurction. This information is listed on the line printer
during a boot I but n9t necessarily in the order'shown in the
Figures. All of the infonnation'listed in Figures 7," 8, 9~
and 10 is also enterea j'nto the system patch file, .

". ,

In Figures 7 and 10, DCT is the OCT ind~x and CIT is the
queueing channePs index. Also in these figures, when a
device type (DEV-TYP) is a pooled deyice (i.e., dual ac­
cess), the information for the alternate device ,is listed di­
rectly below that for the primary device'. The informa.tion
is the same except that the DEV-TYP column contains

#70
ISAVE

the"word "DUAL" and the DEV-ADR column contains the
alternate device address.

RECONFIGURA nON AND PARTITIONING MESSAGES

Table 5 lists the messages that mo,y be out-pM wh~6' recon-
"fig~ratiohandpartiti~nir'19 com~qnds (m~ being processed.

When on error is encountered, th~ error message is preceded
by a message containing a dollar sign ($) beneath the char­
acter position in the command at which the error was found.
Processing of the command in error:" is discontinued •

·.KEEP ALL OEV.AOCR.AS IS EXCEPT FeR 11YPE/IREM6VE CHANGES
IREMeVE AOF
'REM6VE A16
ITYPE 9T7322,A80,A81
,TYPE OC7212,BFO
IREM8VE C6NT,AFO
IREM8VE eF'1
IREH8VE C6~T,AEO
'TYPE DP7242,080
,TYPE HE7611,A05
lEND

Figure 9. Reconfiguration and Partitioning Commands that were Used

••• *.**.** •• ~** ••• *.*.******.* ••••••• * •• *.*.*.*.***************** •• *.** •• *******.*
FIN A L c e N ~ T G U RAT I 8 N

••••• * ••••••••••• ** ••••• ** ••• ** ••••••• *** •••••••••••••• * •••••• * •••• * ••••• ** •••• * ••
o E V ICE RES e U R C E C 8 NFl G U RAT leN

OEV.TVP I OEV.IO I OEV.AODR :OCT-CITI PUB/PRIV I TYPE: RT8T I GENERAL INF8RMATI8N .p.-..•.. -.~••.. -... -.--... -... -..•.. -.---•. -.. ~ ...•.•.•...•.•.. -•...•.•..••
Ty7012 TyAOl 0001 01-01 Ty N8r.pARTITI8NABLE
CR7140 CRA03 0003 02 .. 02 CR N8.PART.OiV ,SYM
CP7160 CPAO .. 0004 03.03 cp SYMBI8NT
LP74t45 LPA02 0002 0 ... 0" LP Ne·PART-OEV ISYM
OC7212 OCBFO, 01F'O 06-06 DC N8T-PARTITI8NABLE
OC7232 OCCFo 02FO 08.07 N8r-PARTJTI8NABLE
9T7322 9TA80 0080 OA .. 08 9T 02 NS·PART·C8NT
9T7322 9TA81 0081 OB-08 N8·PART·CBNT
OP7242 OP080 0380 10·09 PUB OP 00 N8T·PARTIT18NABLE
XP1200 XPCoD 0200 1r.ne XP Ne.PART-e8NT ISYH
HE7611 MEA05 0005 20.00 ME N8T-PARTITI6NABLE

*** ••••• * •••• * •••• * ••••••••••••• * •• ***** •••••••• * •••••••••••••••••••• ** •• ** •••• *.*

Note: The PUB/PRIV column will contain "NO PRIM.PATH" or "NO AlT .PATH" when the primary or alternate
controller has been removed.

Figure 10. Device Resource Configuration for the Booted System

Patch De ck Structure 31

Table 5. Rec;:onfjguration arid Partiti~Mes5ages

r-----------------~--------------~----~_.----~--------~~----~---.~~----~.~'------------~ I Message

. ALL :TYPE/:REMOVE COMMANDS IGNORED.

**device, va'fue CANNOT BE ADl?ED TO SYSTEM

CANNOT CONVERT In' IN 'yyndd '

CANNOT PARTITION, CONT. ndd ALREADY
PARTITIONED

CANNOT PARTITION, CaNT. ndd NON­
PARTITIONABLE

CANNOT PARTITION, CaNT. ndd NOT
PRESENT

CANNOT PARTITION, CONT. ndd NOT
PRIVATE PACK

CANNOT PARTITION, DEV. ndd ALREADY
PARTITIONED

CANNOT PARTITION, DEV. ndd NON­
PARTITIONABLE

CANNOT PARTITION, DEV. ndd NOT PRESENT

CANNOT PARTITION, DEV. ndd NOT PRIVATE
PACK

CANNOT REMOVE, CONT. ndd NOT PRESENT

CANNOT REMOVE, DEV. ndd NOT PRESENT

CONT. ndd PARTITIONED

32 Patch Deck Structure

Description

A :GOcornmand. hm been spedfie~\
command!: ar;e'not' meaningfu I. .~ "

:TYPE ·and :REMOVE

As. the resu.lt ott~e :TYPE command, "fhe SYSGENed system and
target machine tf"cvice/controllet ~bdel number definitions are
not equivalenL"'~ This'message is preceded by a message containing
a donar sig'r(~):'l)l'ldeJ the device type and also under the first
device address for single access or the alternate device address
for dual access devices.

device - device type and model number.

value - device address (in the format ndd described at the
beginning of this section).

This message can also appear when then~ are more :TYPE defini­
tions for the device type than allowed for in the SYSGENed
system.

A device address was encountered for which the n in yyndd could
not be val idated •

The controller specified on a :PART command has already been
!

partitioned. :

~. The controller specified on a :PART command is not partitionable.
(It is a controller for a Teletype, a RAD, or a cac, or it was

" defined at SYSGEN to be a non-partitionable controller.)

The controller specified on a :PART command either does not exist
or was removed in the reconfiguration process.

A disk pack controller was specified on a :PART command and one
or more of its associated disk pack spindles is public. Public disk
pack spindles cannot be partitioned.

The device specified on a :PART command has already been
partitioned.

The device specified on a :PART command is not partitionable.
(It is either a Teletype, a RAD, or a COC, or it was defined at
SYSGEN to be a non-partitionabre device.) -

The device specified on a :PART command either doesn't exist or
was removed in the reconfiguration process.

Public disk pack spindles cannot be partitioned.

The control fer specified on a :REMOVE command either does not
exist or wos previously removed in the reconfiguration process.

The device specified on a :REMOVE command either does not
exist or was previously removed in the reconfiguration process.

The specified controller has been successfully partitioned.

',1 Clhlc 5. RecDnfiguf<;ltion and Partitioning Messages (cont.)
r-------~~--~----~----~ ___ --~--~----~~-~------~'~------~-----------------------------____,

Message', Description ~

r-------------~~--------~~---------~~----~----------------------------------~----~~"~~
CONTINUA nON ILI~.EYAl

DEV. ndd PARTITIONED

DUAL ACCESS DEFINED lLLEGAL ndd}, ndd
2

,

DUAL/SINGLE ACCESS MIXTURE

INVALID TERMINATOR

**KEEP ALL DEV. ADDR. AS IS EXCEPT FOR
:TYPE/:REMOVE CHANGES

NO RECONFIGURA TION PERFORMED DUAL

ACCESS DEFINITION CONFLICTS

(ndd 1 [,ndd
2
]) ,(ndd

3
(,ndd 4])

**NO SPACE lEFT FOR CONFIG. INFO

**PACK yyftdd PARTITIONED, DIAL ndd
NOT AVAILABLE

**QUEUEING CONFLICT BETWEEN OCT ii
AND DCT jj

QUEUE FOR DCT jj CHANGED TO THAT OF
OF DCT ii

,Continuation commands (i .e., commands c~r.taining· a semicolon)
are,not allowed. '

!he, spe.cified de~ice has,bEi~n 's~cc~ssfuffy part,itioned.

On a :TYPE command, the primary address and the alternate ad­
dress ona dual a,ccess device are equivalent.

A :TYPE command specifies both single access and dual access
device addresses; or the device type is for a sing Ie access device
and the address is for a dual access device (or vice versa).

A bad or unknown terminator terminates a field or option. Valid
control command terminators are NEW LINE, period, carriage
return, trailing blank, and end of control command image.

A :SA VE command has been encountered.

The :GO command was specified, or no : commands were spec­
ified, or a :END command was specified by itself.

A device address conflict has occurred as the result of :TYPE
commands. Either a single access device address is the same
as a primary or alternate address on a dual access device, or
the primary address is the same as the alternate address on a
dual access device. The ndds indicate the addresses involved.
This message will appear twice for each conflict encountered.

Too many :TYPE, :REMOVE, and :PART command definitions
h:ave been encountered. The total size of the internal buffer
which retains reconfiguration and partitioning commands is
512 words. Each :PART and :REMOVE command requires one
word, each :TYPE command for single access controllers requires
two words, and each :TYPE command for dual access requires
three words. Additionally, the buffer contains one control word.
The buffer is needed to retain all control command information
until every command has been processed. Actual processing of
the commands takes place when the :END command, the first non­
root patch, or an asterisk command is encountered.

The device specified on a :PART command is a disk pack spindle.

An lOP/controller or cluster/unit in one queueing channel has an
equivalent lOP/controller or cluster/unit in some other queueing
channel. The reconfiguration process will change the queueing
channels to be equivalent.

Patch Deck Structure 33

lable 5 .. Reconfiguration and Partitioning Messages (cont.)

~ ... iessage

**TAPE yyndd PARTITIONED, DIA.L ndd
NOT 'AVAlLAB1~ .

UNKNOWN COMMAND, FIELD, OR VALUE

: GENDeR COMMAND

Description

The device specified on.o· :PART ·co.mrnand is a tape drive.

An unknoVfn command, an invalid name, or a value field which
contains too many characters, is not hexadecimal, or is not in
the correct format for the particular machine was encountered.
This message also appears for each reconfiguration and partition­
ingcommand encountered after reconfiguration and partitioning
processing has ended. It also appears when a :GO, :REMOVE,
or :TYPE command is encountered after a :GO command has
been processed and when a :SA VE command is encountered after
a previous :SA VE command was processed.

Example:

This command defines the system DCB associated with tape
input during PASSO. This command is required only if the
files are on a different tape than the boot tape or if they
occupy more than one reel. If the command is not present
in the patch deck, PASSO reads the account and serial num­
ber from the tape and performs an automatic premount of
the tape. No operator intervention is required.

:GENDCB (M:BI,ACCTl,PASS 1,;

:(INS N,OO 1,002), 9T)

Any number of GENDCB commands may appear in the patch
deck. Only the last wi" be appl ied. If it is defective,
fi les wi 1/ be copied from the boot tape.

The format of the :GENDCB command is:

:GEN DCB (M:BI, account[, password];

:, (lNSN, va lue[, value] •••),device)

where

M:BI specifies that tape input is to be through the
M:81 DCB. No other DCB is valid for this
command.

account specifies an account identifier (up to eight
alphanumeric characters) associated with the la­
beled tape to be read during PASSO.

password is the password associated with the labeled
tope to be read during PASSO. The password (if
any) must correspond to that specified when the
tope was created, and may be up to eight alpha­
numeric characters in length.

INSN, value, ••• specifies the serial number{s) (up
to four alphanumeric characters in length) of the
tope(s) to be read by PASSO. No more than three
reels may be specified. The first recl specified
must contoi n the first fi Ie to be read, and may be
different from the reel used to boot the monitor.

device specifies a tape-type device code (e.g.,
9T, 7T).

34 Patch Deck Structure

Any errors in the command are indicated by the message

***GENDCB ERROR

on the OC and LL devices.

GENMD COMMANDS

The GENMD commands are used in conjunction with the
GENMD patches described below. The three GENMD com­
mands are GENMD, LIST, and DELETE.

OENMD This command indicates which fi Ie is to be
patched next. A GENMD command must precede the set
of patches for each fj Ie to be patched. Any number of sets
of patches to the same file may be present, provided each
is preceded by a GENMD command. The format of the
command is

GENMD fi lename

LIST This command lists the patches currently in the file
being patched and has the format:

LIST

DELETE When a fi Ie is patched, a record is kept of the
list of patches to the file within the fi Ie itself. The DELETE

command removes Hli:: ii:Tof po"td1es trom the file (but does
not remove the eHeer of the potches on the fi Ie). The cqrn-:: "
mond maybe used 10 pl'~':C'lIf fifes from.growing too large jf
they are not r~stot:ed when upplying a new p(Jtch deck. The
format of the command is "

DELETE

GENMD PATCHES

GENMD patches are used to mOdify nonresident elements of
the system.

GENMD patches have the format:

{
:GENMD [,segname]1 [I] [n r.] loc, value ,va ue •..• commentJ lsegname,

where

segname specifies the overlay segment name to be
patched. If not present, the most recently spec­
ified segname is assumed. If not present and no
segname was specified previously, the root seg­
name is assumed.

loc specifies the locat ion to be patched and has the
format [name] [±hex value]. The hexadecimal
value is added to or subtracted from the absolute
address of name. A maximum of eight characters
may be used for the hexadecimal value. The name
need not be defined in any particular overlay since
a II the stacks are searched. If more than one
overlay defines the same name, the first is used.
The specia I name '~ refers to the start address word
in the load module HEAD record.

value specifies the value to be inserted at loc. If
more than one value is specified, th~y will be in­
serted at successive locations. Each value must
have the format

hex value[±name[±nameJ. •• J

The absolute address of the names are added to or
subtracted from the hexadecimal value. A max­
imum of eight characters may be used for the hexa­
decimal value. The nome need not be defined in
any particular overlay since all the stacks are
searched. If more than one overlay defines the
same name, . the first is used.

If a name needs to be referred to with other than
word resolution, the standard format is permitted
for byte, halfword, and doubleword resolution
(e.g., BA (name}).

Any value specification may optionally contain a
replacement value check specification using the
format

value {old value}

Old value is formatted in the same manner as
value. If the old value specified is not the same'
as the actual ol~ value, an error message wi"
be issued. However, if the old value specified
matches the (new) value specifiec:, the message will
be issued but the error will not be ~ounted and pro­
cessing ofth~ patch will continue •. ,

A GENMDcommand maybe'continued bytermin'ating the
fjrst~ine witk6 ~micolon (;)~ The semicolon must not di­

, " "vide a name or a hexadecin:tal string and ·is not permi'th~d
where a blank is required. The continuation line must be­

. ,gin with a colon (:) if the continued line began with
:GENMD. Otherwise, the continuation line begins with
the next character of the command.

GENMD ERROR MESSAGES

Tab Ie 6 lists the error messages that may be output when
G ENMD commands and patches are being processed.

CONDITIONAL PATCH CONTROL COMMANDS

A conditional patch control command specifies whether the
patches that fo Ilow are to be used as patches or are to be
effectively ignored. The conditional patch control com­
mand controls the SKIP flag. When the SKIP flag is set,
all subsequent patches are effectively ignored until the
SKIP flag is reset. The conditional patch control command
can appear any number of times and anywhere within the
patch deck (including the GENMD portion). The command
has the format:

D[value]

where value is any well-formed, but not necessarily evalu­
atable, expression terminated by a blank. The value expres­
sion may contain an undefined symbol.

If value contains on undefined symbol, is negative, or is
zero, the SKIP flag is set. While the SKIP flag is set, only
the segname field of a patch is examined to determine when
the current segment's patches end. If value is absent or
greater than zero, the SKIP flag is reset and normal patch­
ing resumes. The special symbol ELSE may be used to toggle
the setting of the SKIP flag.

The SKIP flag is also changed when a Delta format patch
that does not have a loc and value field is encountered
(i.e., segname/;). In this case, it is set if the segname is
undefined and it is reset otherwise.

Patch Deck Structure 35

Messog~,

BAD tMN - 0000

BAD LMN - xxxx

BAD SEG

DLM AT xx

**nn GENMD ERRORS DETECTED

HEX AT xx

LOC AT xx

NAME AT xx

NO FILE NAMED

OLD + loc == va lue

TOO BIG

36 GENMD Error Messages

Table 6. GENMD Error Messages

Description

The file is· not a load mod~ Ie.

An error o'ccurred when occessing the load module. The code and
subcode are indicated by xxxx.

A segname is not in the TREE.

The delimiter in column xx is not what it should be.

This message is output on the OC and LL devices at the conclusion
of the GENMD patching process and indicates how many errors
occurred.

The hexadecimal number ending in column xx is nul I, too large, or
not hexadecimal.

The location ending in column xx or whose value ends in column xx
is not conta i ned in the segment.

The name ending in column xx is null or is not in the load module's
stacks.

A 'GENMD filename' command has not yet been encountered or has
no fi lename on it.

A replacement check error has occurred. That is, an 'old va lue' was
specified which did not match the actual old value. The lac field
specifies the location where the error occurred. The value field
specifies what the actual old value in the location was.

Not enough core is available to read the REF/DEF stack. It may be
possible to do the patch if all names are converted to absolute hex­
adecima I values, since the stacks are read only if a name is used.

Exampfes:

1. The following patches will be included only if thesys­
tern was generated for a large Sigma 9 or- a large
Xerox 560.

iJ::BIG

/SWAPPER+.CS/B @/

/@/Ll,5 0/

/@/SLS,7 Ll/

/@/B SWAPPER+.C6/

I

2. The following patches wi /I be included only if the
ENQ/DEQ feature was included in the system:

ENQ//

ENQ/ENQ0+.266/B @(CW,13 ENQP+.IF4)/

/@/LB,!5 ENQP+.IF4!

/@/CB,!5 13/

I@/B ENQO+.256/

OPEN//

3. The symbol BPS will be set to one if the system was
generated for a pack swapper with greater than 128K.
Otherwise, it wi II be set to zero.

#:BIG*DPSIO

#BPS=!

IELSE

#:iPS=O

COMMENT CARDS

Comment cards may'appear anywhere within the patch deck.
In the portion of the deck that contains Delta format patches
and symbol definition patches, the comment card must con­
tain a 'less than' character «) in column one. In the
GENDCB and GENMD portion of the deck, comment cards
must contain one of the following in column one:

<

*

PATCH FilE CREATION

All patches read during the startup of the system (except
GE NDeS commands) are copied to the file pATCH in the
system account. Those that wer'; read whIte the skip flag
was set appear with the word SKIP in columns 71"-80. The
resurting file may be used as input- to DEE,to c,reate a sys­
terri fape with. the complete, curref1tP,lt~Kdeck on it.

SEQUENCE OF OPERA liONS

The master system tape is loaded into the machine by use of
the standard load procedure described in the cP-v lops
Reference Manual, 90 1675. The hardware bootstrap loads
and enters the tape boot at the beginning of the system tape.
This tape boot, in turn, loads the monitor root and the fol­
lowing functions are then performed.

If the system was generated with the Bl G option on the
:MON card and is not being booted on a Sigma 9 or Xerox
560, the following message is output to the operator's con­
sole and the bootstrap operation is tenninated.

SYSTEM REQUIRES SIG9 OR X560

The operator's console (OC) device address is validated. If
the actua I OC device address is different than that of the
SYSGENed address, the system will halt (wait). The oper­
ator should enter the appropriate OC address into register O.

To enter the OC address on a Sigma mach i ne:

1. Put the machine in IDLE.

2. Set the SELECT ADDRESS switches on the control panel
to O.

3. Enter the appropriate device address into the SELECTed
ADDRESS.

4. Set the COMPUTE switch to the RUN position.

To enter the OC address on the Xerox 560:

1. Enter CONTROL P.

2. Enter 0/ (which displays the contents of register 0).

Sequence of ·Operat ions 37

3. Enkr the new device address followed by the letter M~

4. Enter an X. (Thiswill cause the 560 to resume processing.)

After the OC address has been val idated, the following
message is output to the operator:

ENTER ANY OF:
I == TTY I/O
P == lP OUTPUT
F = TAPE FI~E~
S == :SYS FIlE.$,
T == TAPE PATC'HES
C == CARD PATCHES
D = XDElTA

The operator must respond within 10 seconds by typing one
or more of the characters above followed by new I ine or by
entering new line alone. If new line alone or nothing is
entered, T is assumed by default. If any characters other
than those I isted above are entered, they are ignored.

The letters have the following meanings:

specifies that the operator wants to read and re­
spond to the norma I OC messages duri ng the boot.
Otherwise, defaul t responses are assumed up to
the date/time request (see below) and normal
output is suppresse!d. (Error messages wi II sti II
be output.) i

P causes output to the II device to occur. Other­
wise, the printer is not used.

F causes PASSO's tape copy operation to occur.
Otherwise, a boot-under-the-fi les occurs.

S causes the files to be copied from the POtape into
:SYS without destroying the entire file system.

T define that the patch deck(s) are to come from
and tape or cards respectively. Either, neither, or
C both may be specified. If both are specified,

cards will be read first for root patches and last
for overlay patches and GENMD commands.
Card patches meant to repatch tape root patches
should therefore be placed afte~ a nonroot patch.
Patches of the format segname/ / should be used
in both patch decks to prevent the switching of
devices from spl itting up a logical patch.

D causes Executive Del ta to be retained after the
boot for debugging purposes.

N is meaningful only by itself and means "none of
the above ll

•

The message

NEW FILE SYSTEM

38 Sequer:'ce of Operations

indicates that F was specified. If F was specified; the old
file system Is not desttoyed until the entire patch-deck has
been re,ad. The bootstrap operation may be halted at any
time during this interval by triggering a console interrupt.
The message , '

I INITIALIZATION HALTED- RESTART O. K.

indicates a successful halt.

If I was specified and if the system includes the real-time
option, the system then issues the following message.

RESET RESDF YVY, XXXXX

This message allows the operator to override the SYSGE N­
defined values for the size of the RESDF area (dedicated
real-time memory pages) and its starting address. The op­
erator shou Id respond:

[yyy] [, xxxxxJ e
where

yyy is the optional decimal number of pages to be
in the RESDF areai a value of 0 through 999 may
be used.

xxxxx is the optional hexadecimal word address of
the first page to be in the RESDF area. Any page
address representing a value greater than or equal
to 10,00016 (64K) may be used.

If either or both optional parameter(s) are not specified, the
SYSGEN-defined default(s} will be used.

CP-V will then request the date

DA TE (MM/DD/yy) =

and the operator should enter the 'date (e.g., 2/5/74).

Then CP-V will request the time

TIME (HH:MM) =

and the operator should type the time, which is represented
by a 24-hour clock (e. g., 6:05 PM is typed as 18:05). The
time of day is typed at the left marg in of the console once
every minute after the system has been initial ized. The
form of this type-out is

hh:mm

If the system is being loaded on a machine for which it was
not SYS GE Ned, one of the following messages will be dis­
played on the OC device and the bootstrap operation wi II
be term inated.

I SYSTEM NOT SYSGENED FOR SIGMA 6

r--______ S_Y_ST_E_M __ N~O-T-S-Y-S-G-EN--ED--FO--R-S-IG-MA---~----~I

SYSTEM NOT SYSGENED FOR XEROX 560

If the system and target machines match and if I was speci­
fied the following message is displayed:

1 _______ C_i_Ll_I_D_C_A_SS_I_G_N_O_K __ ~_ES_/_N_O_) ______ _

If the operator's response is YES or 8, it is assumed that
the device addresses for the control device, listing log,
and system device are not to be changed from those estab­
lished when the monitor was defined. If the response is
NO, then the following messages will be output to rede­
fine these device addresses.,

.I
CRndd 9 CR

LPndd 9 LP

DCndd 9 DC

where each ndd is the current device identification and as
many DC messages are output as there are swap devices.

In response to each of these messages the operator must type
two or three characters. If two characters are typed, they
must be 'SA' and indicate no change for this device. If
three characters are typed, they must be the channel and
device designation codes (ndd) defining the address of the
indicated device (see Appendix B, Tables B-2 and B-3).

If the DC or swapper assignment is incorrect, one of the fol­
lowing three messages will be displayed. Two of the mes­
sages request a new swapper device address.

I !yyndd INOPERATIVE
yyndd => yy

(The device address is unrecognizable by the hardware.)

1
Ilyyndd NOT A dddd I'

i~ ___________ yy_n_dd_~ __ yy ________________ ~

(The dddd field specifies the model number that was expected
as the swap device.)

I~ ___________ P_S~A_T_RA __ C_K_F_LA_W __ ED ____________ ~]

(The sViapper disk p,ack contains flaws. The boot process
term i nates.)

Before completing any of thJ above r.~sp~ns:e~ with a 6) or
61, the operatofn,ay cancer the response by striking the 9
key. following this, ~r if a completed response is in error,
the message

1
wil1 be output and the key-in request will be repeated.

If no characters are typed within 10 seconds, a e response
is assumed.

After all necessary responses have been received, the boot
subroutine reads the system information record from tape
and writes it on the LL and OC devices if Pond I are speci­
fied, respectively.

The following sense switch information is then listed on the
OC device if I was specified •

SET SE NSE SWITCHES A NO TYPE N/L
SSWl =>CHECKWRITE DISK WRITES
SSW2 =>NO AUTOIv\A TIC LOGON/LOGOFF
SSW3 =>OPERA TOR RECOVERY ON DISK BOOT
SSW4 =>SYSTEM SECURITY CHECKING

The system will continue when a NEW LINE or any other
character is entered.

Next, the reconfiguration and partitioning commands (if
any exist) are read and processed. A summary of the
system's device wil' be output on the LL device (even if
no :TYPE commands are encountered). Permanently down
devices are not listed.

Next, the monitor patches are read and processed for the
patching of the overlays, ALLOCAT, GHOSTl, and
RECOVER. (If the RECNFIG boot-time processor needs to
be patched, XOELTA performs the patching as it does for
the monitor root. However, these patches must precede
the reconfiguration and partitioning commands in the patch
deck.)

After the nonroot patches have begun, reconfiguration and
partitioning commands are illegal. If any such commands
appear in the deck, the following message is displayed on
the OC device (and also on the LL device if P was speci­
fied) and the bootstrap continues.

':' COMMAND NOT IN PATCH DECK PROPERLY

This message is displayed only one time, even if additional
reconfiguration and partitioning commands are encountered.

Sequence of Operations 39

It then 'copies the overlays, etc." tc? the swapping de.vice,
communicating the sizes and disk addresses to the resident
rootof the absolute monito.r. Control then posses to another
boot subroutine at WRTROOT. This second boat subroutine.
cause's the monitor root to b~ copied to the disk~ preceded
by a disk bootstrap_ At ~bis point, the resident monitor ts
operational but the system has not· yef been established on
the resident swapping dev·iCe. The GHOSTl processor
performs this function •..

"

If P was specified, GHOSTl .aetermines whether any de-
vices or controllers are partitioned. If none are partitioned,
the following message is displayed on the LL device:

~ ________ *_** __ N_O_T_H_I_N_G __ PA_R_T_I_TI_O_N_E_D __________ .]

However, if devices and/or controllers are partitioned,
the following message is displayed on the LL device:

***** ITEMS PARTITIONED *****

followed by messages identifying each deyice or controller
which is partitioned. The messages have the following
formats:

DEY yyndd PARTITIONED

(for devices)

CaNT yyndd PARTITIO NED

(for controllers)

When all partitioned items have been identified, the
following message concludes the list:

** END OF PARTITIONED ITEMS **

When P was not specified or when GHOSTl has completed
the above I isting, GHOST 1 starts the symbiont ghost, Fix
ghost, ERR:FIL ghost, and fill ghost, and then exits.

I

BOOTING F'ROM DISK

Once the operating system has been bootstrapped from tape,
it may thereafter be brought into core from the disk by
means of the load procedure described in the CP-V/OPS
Reference Iv\anua!, 90 16 75.

40 Sequence of Operations

The hardvyor~ boot routine'l'oodsand transfers· control to the
disk boot which then loads.·the 'monitor'roo't into core. The
system requ~ts the date a~d lim~ahd then ~sks

to deterridne whether the system debugger IS memory should
be releas~d.

"

The following message is then output to the operatorls
console:

DO YOU WANT HGP RECONSTRUCTION (Y/N)?

A response of Y causes an HGP reconstruction of the publ ic
file system to be performed. If no response is received
within one minute, N is assumed.

Partitioning information is displayed as described previously,
and the system ghost jobs (Fill, ERR:FIl, and Fix) are
started. Norma I operation may then be resumed.

BOOTSTRAP 110 ERROR RECOVERY

I/O error recovery during bootstrap is provided for the card
reader, line printer, magnetic tape, and disk. However,
error recovery is not possible until the tape boot and mon­
itor root have been read from tape. The following error
messages may appear on the OC device:

! !yyndd INOPERA TIYE

I !yyndd ERROR. TIO value, TOY value,
CMD=loc

Ilyyndd CKWRT ERROR, TIO=Value, TDV=value,
CMD=loc

llyyndd WRITE PROTECTED r SEEK=value

! Iyyndd MANUAL MODE

CHECKWRITE ERROR

where

yyndd is the address of the device with trouble_

value indicates the TIO or TOY results or the SEEK
address.

When any of the first four messages above occurs, the wait
state is entered. To continue, the operator must place' the
CPU into IDLE; STEP, and then RUN s'Ya-te. Tbe I/O will
then be retried. iLth~last r'r\essQge above occors, I/o will
continue whe~th~ cond,iti'on i,s ccmeded. ~nan error
occurs for a magneti~ tapa or"~:liskopera~i6n,'the operati.on
is retried ten times b¢fore an error'message is Of; ?ut.

PASSU P~ESSOR

The PASSO processor performs various system initi~lization
functions and is entered automatically whenever a CP-V
!tape is booted.

Table 7.

PASSO reads a tape specified by the user (via the G Et'~DCB
command) which contains the nonresident elemen~s of the
system (i.e., CCI, processors, libraries, etc.). {This is nor­
mally thelabeledporHon or the tape used to bootstrap the
abSb1ute,monitor.) PASSO allows the user tomodify 'these
elements, vi~ the GENMD portion o'f tne deck.

PASSO MESSAGlS

The messages in Table 7 m6y oe o'utput by the PASSO
program on the LL device. PASSO continues its normal
operation.

PASSO Messages

Message Descri ption

* **CANNOT BOOT LMN

I/O ERR/ABN nn,xxxING FILE fffffFff ON dddd

A load module cannot be read from the bootstrap tape because
core is not large enough. PASSO outputs the filename in error
and continues to the next file, thus ignoring the file in error.

An I/O error or abnormal condition has occurred on tape or
disk.

nn is the error or abnormal code.

xxx is READ, WRITE, OPEN, or CLOS.

ffffffff is the current filename.

dddd is TAPE or DISC.

PASSO continues after this message.

PASSO Processor 41

4. MONITOR DU~lP' A~~AL YSIS PROG.RAM·

. INTRODUCTION

The monitor d'ump analysis program ANLZ (Analyze) is
designed to aid in the debugging ~f CP-V crash dumps.
ANlZ operates in the ghost, on-line, and batch modes.'
It accepts as input any tape or dlsk dump produced by the
recovery procedure and any tape dump produced by exe~
cutive Delta. If a tape is input, the ANLZ user must sup- .
ply the tape type in response to the message

ENTER TAPE TYPE: 7T, 9T, BT, ETC •••

Tape input resul ts in the creation of a disk fi Ie (C P5DUMP);
subsequent tape inputs replace the contents of this file.

GHOST MODE

ANLZ is called automatically by- the recovery procedure,
and functions as a ghost job to interpret and summarize crit­
ical monitor tables and to dump the monitor's dynamic data
area. When ANLZ is initiated after a system crash, it
neither looks for nor accepts any commands, operating en­
tirely on default options. It assumes an IN PUT command
option of LAST; if unable to open the last MONDMP file,
it then assumes an INPUT command of TAPE. (Refer to the
description of the IN PUT command in the following text.)
When Analyze is run in this manner, the output is anab­
breviated form of the output produced by the ALL display
command.

ANLZ is also automatically initiated after a single user
abort. In this case, it functions just as though it had been
initiated as a ghost job via an operator key-in. (This is
described below.)

ANLZ may be called as a ghost job by the operator to
examine the tape produced during an irrecoverable crash.
The operator key-in used for this purpose is

GJOB ANLZ

ANLZ then asks the operatoi for a command:

I ANLZ: ENTER COMMAND, NIL SAYS TO DO ALL J

The operator may respond with one of the following
commands: • . .

NO - iust ~xit.

TA - read a recovery-built tape.

ME - run interactively from the operator's console.

42 Monitor Dump Analysis Program

CP - read the CP5DUMP file' •

1-7 - read the indicated MONDMP file.

? - list th~ ANlZ commands on the line printer.
2

..:: .

NIL (new Ii ne a.Jone) - do default ghost run.

In the interactive ghost mode, a key-in of

INT, id

will cause termination of the current ANLZ operation and
a prompt for input. (id specifies the ANLZ user's number.)

BATCH AND ON-UNE MODES

Any batch or on-line user may call ANLZ by specifying
the name of the program." For on-line users, this program
name is entered in response to a TEL prompt for com­
mands, as follows:

IANLZ @)

Any user, in batch or in on-I ine mode, must have the proper
privilege level (80 or better) to examine the monitor. If
not, AN LZ outputs the following message

xx PRIVILEGE LEVEL NOT HIGH ENOUGH

where xx is the user's current privilege level. (Response
messages are output on the line printer for a batch user.)

When accessed on-line, as an interactive ghost, or as a
batch job, ANLZ is completely command-driven. It re­
sponds to commands that selectively display monitor tables,
examine memory, and compare the dump with the running
monitor.

An on-line user may terminate a display by depressing the
BREAK key.

COMMANDS

When ANLZ is first entered, it responds

ANALYZE HERE

and, if in on-line mode, it requests entry of an input com­
mand with the prompt character

<

All commands, options, and ou-tput are identical for batch,
interactive ghost, and on-line modes.

INPUT COMMAND

INPUT The INPUT command direc;:ts ANLZ toihput
from a particular disk or tape fi Ie, or to open a: file~ Th~
format of the command is

IN [PUT]option

where option may be any on~ of the options shown in
Table 8.

After reading a tape or disk file as directed by the INPUT
command, AN LZ informs the user of the si ze of the fi Ie
with the following message:

THE LAST PHYSICAL PAGE IN THE FILE IS xx

If in on-I i ne mode, i tthen prompts «) for the next command.

Table 8. IN PUT Command Options

Option

TA[PE]

Meaning

Directs ANLZ to read a tape created
by the recovery process and to wri te it
into the file CP5DUMP which is then
used for input.

CP[5DUMP] Directs ANLZ to open the CP5DUMP
for input.

LA [ST]

number

Directs ANLZ to open the last file
formed by the recovery procedure for
input. (ANLZ must look at the run­
ning monitor to obtain this information.)

Directs ANLZ to open a crash file
formed by recovery. Recovery fi Ie
names are of the form

MONDMP{number)

where number is the number of the dump
file (1 for the first dump since a IIcold II
start, 2 for the second, and so on).

DISPLAY COMMANDS

Three display commands may be used to output information
from crash dumps. They are

DISPLAY

RUN

ALL

DISPLAY The DIS PLAY command outputs information
existing cit the time of the'crash. The format of the com-
mand is .

Di[SPLA Y) option

where 'option specifies the informCltioo to- be display'ed
(T9ble9)~ .

RU~ the RUN command outputs various linked lists of
the moni.tor by running through the I ist clOd displaying each
entry. - The format of the RUN command is

RU[N] option

where option specifies the list to be printed (Table 10).

ALL The ALL command performs all of the functions of
the display commands described above and the functions of
ANLZ (except dumps) when it is initiated by the auto­
matic recovery procedure. The format of the command is

AL[L]

A numerically and alphanumerically sorted monitor map is
output at the end of the ALL display.

INTERACTIVE MONITOR DISPLAY COMMANDS

Commands in this group allow the user to examine either
the dump or the running monitor. Both the monitor and
user JIT and physical core may be examined. The com­
mands are

loc

Line feed (or carriage return)

*

MONITOR

lac = value

loe The loc command outputs the contents of the speci-
fied location. The format of the command is

lac

where loc is one hexadecimal value (1 to 8 hexadecimal
digits) or two hexadecimal values separated by an operator
indicating addition (+), subtraction (-), multiplication (*),
or division (%). Note that loc values do not require a pre­
ceding delimiter character II. II.

Commands 43

Tobie 9. DISPLAY Comma.nd Options
! -,
I Option Meaning i

t--,
AJ[ITS] Displays JIT, AJIT, al,dcontext area ,of all in':Qre us~rs ~t ,the time of the crash.

-..' ---
AT [ABLES] Displays the Inco,re 'portion of ALLOCAT'S tobles.

, '; " ',' ...

AvER] Di~p'ays "the ~ape and di'sk- t'ab;es. . ' ~',

CI[T5][, index] ... ,,[)i~pl<,!y~' the~r"eq~e~ted erytries,ofthe Chalmel fhformation Table. Up to 20 entry
indexes. -I11O'y be spec,ified~ ,If noirldex is specified, the entire Channel Informa-
tionTab1e is'disp,laY'ed.' , '

CO[C][, index] ... Displays the requested entries of the COC table. Up to 20 entry indexes may be
specified. If no index is specified, the entire COC table is displayed.

CU[N] Displays the current user's JIT, AJIT, and context area.

DC[TJ['index] ..• Displays the requested entries of the Device Control Table. Up to 20 entry indexes
may he spec ified. If no index is specified, the entire Device Control Table is dis-
played.

EL[OG] Displays and vol idates the incore error Jog buffers.

FM[, index] .•. Displays the requested entries of the file management read-ahead tables. Up to
20 entry indexes may be specified. If no index iS,specified, the entire set of file
management read-ahead tables are displayed.

FQ Displays the Free I/O Queueing tables.

JO[,chan] ..• Displays the device on .the requested I/O channel. Up to 20 channels may be
specified. If no channel is specified, the devices for all channels are displayed.

IQ [, index] .•• Displays the requested entries of the I/O queueing tables. Up to 20 entry indexes
may be spec ified. If no entry index is specified, the entire set of I/O queue jng
tables are displayed.

JIT[, id][, loci, loc2] Displays the contents of the JIT for the user specified by ide Loc 1 and loc2 specify
that only'a portion of the JIT page is desired and represent a relative offset into the
page in hexadecimal. If an id of 0 is given or if no id is specified, the monitor's
JIT is displayed.

MR[, lac 1, loc2] Displays the requested portion of the monitor's root. The displacements (Joc 1 and
loc2) must be absolute hexadecimal addresses. If no displacements are given, only
the monitor's data area will be dumped.

OJ[lT] Displays all of the out of core JITs at the time of the crash.

OS Displays the user outswap tables (if outswap is in progress).

PA[RTITIONS][, index] ..• Displays the requested entries of the partition tables. Up to 20 entry indexes may
-., ," be specified. If no index is specified, the entire partition table is displayed.

PF [ILE] Displays the patch file that was created last.

PM Displa)'s the contents of the page matrix identifying the owners of all pages. This
option assumes that page identifying routines (such 'as RUN USERS, RUN PROCS)
have been run previously.

PN Displays the processor inswap tobles (if.inswap is in progress).

44 Commands 90 31 '138-1(11/76)

Option

PP, pageno[, loc " loc2]

RA[T]

RB[T]

RE [GISTERS]

RC[XT]

RQ

ST[ABLE]

SW[APPER]

SY[MBIONT]

TP

TR[APS]

TS[TAC K]L id]

US[ER][;d] .••

VP, pageno[, loc " loc2]

WHY

Option

MO[NITOR]

PR(OCESS OR] ~ {!ame}]
RT

ST[ATE]~{~#}]

US[ER)~ {~d (, id]. J]
XD[ELTA]

Table9~ DlSPLJ\Y Command Options (cont.)

Meaning

.. Displays the contents', of the indicated physical page. Loc 1 and loc2 arerelat.ive
, page ~ffsetsexpresSed';n decimal (0 ·512),. If they are specified, only the portion

()f th'e page in the indicated .range is d·j$plciyed. ')
., .. '. I. • •

:'J)i'spl~ys, the re~urceQJIOcat,ion table~'.'. "
-;' , ~ :' ... ~ .. '.r~ ... '". ".

~ .: ~ ; -." ~.' , j' .

'Displays ,the rElI'~,Qte b~tch ta.bl~s' ri~tJiere dre~,qny).

Displays the softWare 'c~<::k cod.~'~'s()ftwaTe check message, and the first two
register blocks at the time of the crash.

Displays the area of memory oct:upied by the recovery routines.

Displays the resource subqueue lists.

Displays the output symbiont tables.

Displays the contents of the swap/swap scheduling tables.

Di~plays the contents of the RBBAT recovery file.

Displays the transaction processing tables (if there are any).

Displays the contents of the trap and interrupt locations.

Dumps the temp stack of the user indicated by ide If no id is specified, the
monitor's temp stack is dumped.

Displays the user tables of the specified users. Up to 20 users may be specified.

Displays the contents of the specified virtual page. Loc 1 and loc2 are relative
page offsets expressed in decimal (0-512). If they are specified, only the portion
of the page in the indicated range is displayed.

Displays the software check code and the software check message.

Table 10. RUN Command Options

Meaning , '

Specifies monitor pages.

Specifies processor pages or specific processor. The default is S, indicating all
processor pages.

Specifies real-time page chains.

Specifies state queues. The number of a specific state queue may be specified
(ql), or S indicates all. The default is S.

Specifies user pages for all users (S), or for particular users (id). Up to 20 users
may be spec ified. The default is S.

Specifies XDELTA's page chains.

Commands 45

,loCi This command outputs the contents of th·(:
n:emary focati.ons between locl and loc2' The format of
th<~ command IS

where loci is a hexcdeC;imal nllmber or an expression indi­
cating a sum or difference of two hexadecimal numbers. "

Two levels of loci commands may be joined by the +,",-~ *,
and % (division) operators. Fqr example, the following 'are
permissible: . " <

loc + locI' loc2

loc - loc
1
,Ioc

2

foc l' foc 2 + loc

loc l' loc2 - loc

loc 1 + foc
2

, loc
3

- foc 4

loc 1 * loc2, loc
3

% loc 4

The resultant dump suppresses identical lines and an * is
inserted next to the I ine number following the identical
line encountered. An EBCDIC translation is included to
the right of the dump.

LINE FEED The line feed (or carriage return) character
may be used in conjunction with loc and locl' loc2 com­
mands to dump the contents of the next location.

This command may be used in conjunction with the
loc and loc l' loc2 commands to dump the last location.
The forma t of the command is

* This command may be used in conjunction with the
Joe and loc 1, loc2 commands to dump the location whose
address is contained in the location specified by loc. The
format of the command is

*

MONITOR The MONITOR command turns the monitor
display mode on and off (as does any explicit command).
When the display mode is on, the current monitor is dis­
p fayed. When the display mode is off, the dump is dis­
played. The format of the command is

MO[NITOR] [DI[SPLA yJ]

where DISPLAY turns the monitor display mode on. Omis­
sion of DISPLAY turns the monitor display mode off.

46 Commands

·Ioc = value : This command places the spe~tned value into
the specified location (Ioc) of the running mo"nitor. (The
display mode must be o~.) 1he forinat oJ the command is

"~I o~ = va lu~

where

lac is the specified location.

value is the specified value.

MAP COMMANDS

These commands turn the map mode on and off. They work
only with interactive commands and apply only to a partic­
ular user. The two map commands are

MAP

UNMAP

MAP The MAP command loads the map of the specified
user if his JIT is in core. The format of the command is

MA[P], id

where id is the user identification assigned by the system.
Dump output following a MAP command is assumed to be
virtual addressed.

UNMAP The UNMAP command turns the mapping mode
of operation off. The format of the command is

UN[MAP]

Dump output following an UNMAP command is assumed to
be physical addressed.

SEARCH COMMANDS

Commands in this group allow core to be searched. The
commands are

COMPARE

SMASK

SEARCH

COMPARE The COMPARE command compares dump lo-
cations between loq and loc2 with the running monitor,
and outputs locations with nonequal contents. The format
of the command is

SMASK The .5MAS K command sets the mask to the
I specified valve. The.'~~rmat of the command is

SM[ASK],value

where value is a hexadeci"'laf mask •.

SEARCH The SEARCH command s'earches for and outputs
all words between locations loct andloc2 that contain the
specified value under the mask. The format of the com­
mand is

SE[ARCH],value,loc
l
,loc

2

where

value is a hexadecimal value.

locl is the beginning location and may be a hexa-
decimal number or an expression indicating a sum
or difference of two hexadecimal numbers.

loc2 is the ending location and may be a hexadec-
imal number or an expression indicating a sum or
difference of two hexadecimal numbers.

OUTPUT COMMANDS

\
Commands in this group direct or format the output of
ANLZ. Four output commands are provided:

ROWS

lP

UC

PRINT

ROWS The ROWS command establishes the width of dump
output. The format of the command is

ROWS value

where value is a number between 1 and 12. ROWS 1 would
cause all hexadecimal dumps to be one word wide; ROWS 8
would cause the dumps to be eight words·wide. (Platen
width may need to be extended at ROWS = 8.)

~ lP The LP command directs output from ANLZ to the
line printer. The format of the command is

LP [rows]

where rows indicates the dump width in number of words.

UC The UC command directs 'output from ANLZ to the
on-line terminal ~ The format of the command is

UC [rows]

where rows indicates the.dump width in number of words.

PRINT· The PRINT command closes the output symbiont
file to allow output to the line printer without re~uiring a
return to TEL. The format of the command. is

DEB"UG COMMANDS

Commands in this group permit the use of Delta to facilitate
monitor debugging. The three debug commands are

BF

DELTA

NODElTA

SF The BF command specifies the name of the boot file
that represents the monitor being examined by ANLZ.
This enables the debugger Delta to read in the required
symbol tables. If the BF command is not specified, the file
M:MON in :SYS is the boot file that is assumed by default.

The form of the command is

BF fid

where fid is the file identification an.d is in the form

name r[.[accounq.password]l
'L·account J

DELTA The Delta command associates the debugger
Delta with ANLZ and gives control to Delta. If the
SF command has been issued, the Delta command ;S loads
the global symbol tahle of the monitor root from the spe­
cifiedboot file. The Delta command name ;S loads the
local symbol table of the module named. If the SF com­
mand was not executed, the file M:MON in :SYS is used
to obtain the monitor symbol tables and the Delta com­
mands apply to the running monitor being examined, not
to the monitor in the boot file. The Delta command ;G
is used to exit from Delta and to return control to ANLZ.

The form of the DELTA command is

DE [LTA]

NODEl TA The NaDEL TA command disassociates the
debugger Delta from ANLZ. The form of the command is

NO[DEllA]

Commands 47

MISCelLANEOUS COMMP.NDS

'SYMBOLS, This command creates an 'alphanumericolly
sorted monitor r'00p' by 'reading, sorting, and formatting the'
moni,tor's REF/DEF stackin the file MONSTK. :SYS.

The fo~~:.6f the c6mr:nqn~ ; is

SY[MBOLS}[+'id]

where fid is used to select symbols from a file and has the
format

name r~ account]. password 1
l·account J

MONSIK. :SYS is the default.

IS This command reads the sorted symbol table that was
saved the last time ANLZ ran as a ghost job. The command
produces no output. When the IS command is used, the
SYMBOLS command is unnecessary. The format of the IS
command is:

IS

SYMBOL/ The symbol/ command displays the contents of
a monitor location. The format of the command is

symbol/

where symbol specifies the name of a location in the
monitor.

Note: The symbol table must have been retrieved by use
of the SYMBOLS or IS command prior to use of this
command.

DUMP This command causes a specified range of ad-
dresses to be dumped. The command's format is

DUMP loc
1
,Ioc

2

Dump output following a MAP command is assumed to be
virtual addressed; after an UN MAP command, physical
addressed.

CLOSE This command causes the input dump file to be
closed. The format is

CL[OSE]

A user should close a fi Ie prior to entering the monitor dis­
play mode.

HELP This command I ists all ANLZ commands and op­
tions, and gives a brief description of the purpose of each.
The form of the HELP command is

HE[LP]

48 Commands

SPY COrAMA.WD

Spy Spy provides a mechanism for obtarhing information
about users currently in the sys:fem. If the ANLZ user has
the proper: privilege (i.e.,. CO or above),< Spy will read the
selected s~t of user JITs from the swap device and output
them on th~ LO device(i. e., on the LP or UC). If the
ANLZ ~5etdoes not have sufficient privilege to allow direct
I/o, SfY will try to obtain the selected user JITs from in
core. "J::iciwever, it is unlikely that Spy will be able to

. capt~re '·ihe JITs of more than a few users at best.

. The format of the command is

Spy [option]

If no option is specified,' all user JJTs will be read. The
options are:

SWAP reads all user's JITs on the swap device.

HC H]. • • reads the JITs of the specified users.

SWAP H[, H]. . . reads the JITs of the specified users
from the swapGdevice.

SNAP He H] ••• SNAPs the selected JJTs.

In general, users are specified by their user numbers. How­
ever, batch IDs can also be used.

The SNAP option causes the JIT to be output in the usual
SNAP format. All other Spy output has the column headings
listed in Table 11. .

Table 11. Spy Output

Column Description

USER B - batch job.

o - on-line user.

. ~

G - ghost job.

* - JJT read from swapper.

ACCOUNT The user's account number.

NAME The user's log-on name.

PRY The user's privilege lever.

PRI The user's current priority.

PRB The user's base execution priority.

IN/ID The user's line number if on-line. The
user's SYSJD and partition number if
batch.

STATE Theuser's current state.

Table .. 11. Spy Output (cont~) EXIT COMrVIANO

Column

PSIZ

PCT

CCBUF

CPU - SEC

REM - SEC

CAL - CNT

DISCAC

TAPEAC

APS

CPS

PG - CNT

Heading

REGISTERS:

Description

Th~ user's peak si~e .in decin:tql n9r;1b,er
of pages.

The user's current page count in.' ~',
decimal.

The last control cord read or the 'l~st
on-line command that TEL read.

The number (in decimal) of seconds the
user has been in core.

The number (in decimal) of seconds the
user has left to run in core. (Valid for
botch jobs only.)

The number (in decimal) of CALs the
user has issued.

The number (in decimal) of RAD and
disk accesses the user has performed.

The number (in decimal) of tope ac­
cesses the user has caused.

The \ number (in decimal) of I/O ac­
cessfs per CPU second for the user.

The number (in decimal) of CALs per
CPU seconds for the user.

The number (in decimal) of line printer
pages that the user has printed.

EN·B.The END command causes ,an exit fro!'!", l\NLZ.­
The format of the command is

EN[O]

OUTPUT

The output produced by ANLZ consists of displays of for­
matted monitor and user tables and the contents of registers
existing at the time of the crash. The time and date infor­
mation in the output page headings refer to the time at
which the crash occurred.

Some of the output tables are chain type displays. That is,
they are formed by starting at the head of a chained list and
outputting that list until the tai I of the chain is reached. If
the toil and the lost page in the chain do not agree, the fol­
lowing message is output:

TAIL ERROR

If the count differs from the number of pages in the chain,
the following message is output:

COUNT ERROR

Table 12 lists all of the ANLZ displays in order of appear­
ance in the ANLZ dump. The left-hand column specifies
the heading that appears at the top of each display. The

. right-hand column describes the contents of the display.

Table 12. Displays

Contents

The contents of the registers at the time the dump was token.

TRAPS/INTERRUPTS: The output for trap and interrupt locations. The trap and interrupt locations
are those used by the associated XPSD instructions and are listed in
Table 13.

PAGE IN WHICH TRAP OCCURRED: The cQre page in which the trap occurred, if a trap was the couse of the
recovery.

USER TABLES: The user tables. This display includes the tables associated with each
user that has a page chain. The meaning and source of items in this dis-
play are defined in Table 14.

ADDITIONAL USER TABLES: The remainder of the User Tables display above. The meaning and source
of items in this display are defined in Table 15.

Output 49

Table 12. Displays (cant.)

. Heading Contents
-

USER STATE CHAIN S: ,The user stat~chains which indicate th~ s'tate of each user in the system.

RESOURCE WAIT· QUEUES:
I

The queues of users waiting for resourc~s: . The queues are listed and de-
fined in Table 16.

SWAP TABLES: The swap tables. The meaning of each location in the table is defined
in Table 17.

PARTITION TABLES: The partition tables. Table 18 defines the headings in this display.

PROCESSOR TABLES: The processor tables. Table 19 defines the headings in the display.

MONITOR (FREE) PAGE CHAIN: The monitor free page chain. The swapper page chain is formatted in the
same manner as this display. Usually there is no page chain data
output.

USER PAGE CHAINS: The user page chain display. This display indicates which pages and how
many pages were being used by the various users resident in core.

PROCESSOR PAGE CHAINS: The processor page chain display. This display indicates which pages and
how many pages were being used by the various processors resident in core.

I

1

READ AHEAD TABLE~: The read-ahead tables.

REAL TIME PAGES: The real-time page chain.

XDELTA/HANDLER PAGE CHAINS: XDEL TA 's page chain.

PHYSICAL MEMORY ALLOCATION: The actual physical memory allocation on.a page-by-page basis. This
display is a composite picture of the monitor free page chain, user page
chain, and processor page chain displays, pi us the resident monitor and
its JIT, plus any unallocated pages.

ALL YCA T TABLES: The ALLOCAT buffer adjustment tables. The headings used in this
display are defined in Table 20.

UNALLOCATED PAGES: The contents of any unallocated 'pages.

I/O CHANNEL DEVICE STATES: The I/O channel and device states. The display is separated into tables
pertaining to each logical channel. For each channel, ANLZ prints the
channel information table (CIT), the device control tables (DCT) for de-
vices on the channel, and the user I/O request queues on those devices.
Table 21 defines the headings used in the display.

FREE QUEUE ENTRIES: The free queues entries which are used to contain user I/O requests for
I/O devices defined in the I/o Channel Device States display above.

CHANNEL INFORMATION TABLE: The channel information tables (CIT).

DEVICE CONTROL TABLES: The device control tables (DCT). Table 22 defines the meaning of the
headings used in this display.

50 Output 90 31 13B-1(11/76)

Table 12. Displays (cont.)

Heading
" .'

Contents

tOO TABLES: The 100 tables. Tobie 23 defines, the meaning for the headings I)sed in
the '100 tables display ~ :

,

COC TABLES: The COC- tables. This disploiir.c1vdes the line table"valoes for those'
lines having an associated user (determined bY,a non-zero value tn
LB:UN). Table 24 defines.'the headings used in the COC tables display.

RESOURCE ALLOCATION TABLES: The resource allocation tables.
,

AVR TABLES: The AVR tables. Table 25 defines the headings used in the A VR tables
display.

IN CORE ERROR LOG DATA: The contents of the i ncore error log buffers.

OUTPUT SYMBIONT TABLES: The output symbiont tables. The headings used in this display are
defined in Table 26.

*** ASSIGNED CPOOLS: The contents of the assigned CPOOLs and corresponding SPOOLs.

· · · *** AND THEIR SPOOLS: -'

MONITOR JIT: The monitor J IT contents and the monitor TSTACK contents. TSTACK
headings are defined in Table 27.

CURRENT USER: \ The current user's J IT.
I

CONTENTS OF TSTACK: The current user's TSTACK. TSTACK headings are defined in
Table 27.

ADDITIONAL JIT FOR USER' nn: The current user's AJ IT (additional JIT).
~

CONTEXT AREA FOR USER' nn: The current user's context area.

*** PHYSICAL PAGE' nn: The current user's physical pages.

MONITOR ROOT: The mon i tor root.

RBBAT RECOVERY FILE: The RBBA T recovery file, which includes ghost communication buffers, the
RBBAT environment, the RBBAT static data, and the RBBAT dynamic data.
(Usually there is no dynamic data output.)

USER IDENTIFICATION: The user identification. This display is a composite of all JITs in the
MONDMP file.

PATCH FILE: The patch file built by GHOST1 at system boot time.

INSWAP USER: The current inswap and outswap users' core (if any). This figure has the
same format as the Incore Users display.

INC ORE USERS: The current i ncore users' core.

CONTROL SECTION MAP: A mop of the monitor modules' start addresses.

SYMBOL MAP: The symbol map. ..

TABLE OF CONTENTS: The Table of Contents for the ANLZ dump.

Output 51

.. " Tabl e 13. Trap and Interrupt. Locations for XPSD
Instructions

I Location Name of
I of XPSD Meaning Handler

X'40 ' " Nonallowed opet'Gtio~Jrpp > NOPPSD

X'41' L.,'nimplement.ed .in.str~ction UNIMP
trap

X'42' Sto,?k overflow trap STKOVF

X'43' Fixed-point arithmetic FIXOV
overflow

X'441 Floating-point fault FLTFLT

X'45' Dec imal arithmetic fault DECFLT

X'461 Watchdog timer runout CSE$ERR

X'47' Multiprocessing usage IPT47

X'481 CAL 1 instruction CAL1PSD

X'49' CAL2 instruction CAL2PSD

X'4A' CAL3 instruction CAL3PSD

X'4B' CAL4 instruction CAL4PSD

X'4C'
\

Hardware error trap CSE$ERR

X'4D' Instruction exception trap CSE$ERR

X'4E' XDEl TA entry LEE20

X'4F' JIT pointer -
X'50' Power on PONPSD

X'51' Power off POFPSD

X'54' ClOCK3 counter -
X'55' CLOCK4 counter -
X'56' Pari ty error PERPSD

X'58' Counter 1 zero ClK1PSD

X'59' Counter 2 zero CLK2PSD

X'5A' Counter 3 zero CLK3PSD

X'5B' Counter 4 zero CLK4PSD

X'5C' Input/output interrupt IOPSD

X'5D' Control panel OCPSD

X'60 ' cae input interrupt COCINl

X'61' . cae output interrupt COCOUTl

52 Output"

Table 14. User Tobie Headings
, .

Heading Source
,.

Meaning

USER - 'Internal user number.

ST UB:US User's state.

BL UB:BL Link to previous user in
same state.

Fl UB:Fl Link to next user in same
state.

FlG UH:FlG User's flags.

FLG2 UH:FlG2 Exit control bi ts, miscel-
laneous control flags.

JIT UB:J IT Physical page address of
user's J IT.

SWPI UB:SWAPI Swap table index.

HJIT UH:JIT Track/sector address on
the swapping RAD of
user's JIT.

AJIT UH:AJIT Track/sector address
of user's additional
JIT.

PCT UB:PCT User's page count.

ACP UB:ACP Number of associated
command processor.

APR UB:APR Number of associated
processor's root.

APO UB:APO Number of associated
processor's overlay.

ASP UB:ASP Number of associated
special processor.

DB UB:DB Number of ass.ociated
debugger.

OV UB:OV Number of associated
overlay.

MF UB:MF Number of VO events
outstandi ng.

Table 15. Additional User Table Headings Table 17. Swap Table Terms (cont.)

Heading Meaning
.-

USER User nurriber~.

MISC Either time left for user t() remain asleep
or resource wait queue forward I ink.

UH:DL DO-l ist address.

CYL User's procedure cyl inder number if disk
pack swapper.

PRI User's current priority.

PRIB User's priority base value.

NECB Number of ECBs to be posted for this
user.

UH:NL Pointer to head of ECBs to be posted.

Table 16. Resource Wait Queues

Name Description

R:SYMF Users queued for symbiont file space.

rhSYMD Users queued for symbiont disk granule.

R:OCR Users queued for OPEN/CLOSE.

R:DPA Users queued for swapper granule.

R:QFAC Users queued for ALL OCA T •

R:NQW Users queued for ENQ.

Table 17. Swap Table Terms

Location Meaning

S:SIR Swap in requests posted.

S:HIR High priority requests posted.

S:SIP Swap-in progress flag.

#SWAP$DEV Interrupt bypass count.

S:CUN Current user number.

S:ISUN In-swap user number.

Location . Meaning

S:CUI~ Count of users in system.

5:ID~F

S'B:OSN

SB:OSUl -
~ .:"

S:B-ECL

SB:NP

SB:PNL

SB:FPN

SB:FPL

M:SWAPD

MB:SDI

MB:SFC

MB:#RTRY

M:CLBGN

MH:CLEND

., .I~·I·e -fldg: •.

'Number of out-swap usE!rs.

Out-swap, user list.

Beginning and end command list
for each outswap user.

Number of in-swap processors.

In-swap processor numbers.

Number of freed processors.

List of freed processors.

Address of swap device.

DCT index.

Swap function code.

Retry count.

Beginning of current command
list.

End of current command list.

Table 18. Partition Tables Headings

Heading Source Meaning

Calculated Index to partition tables.

ACCOUNT PLD:ACT Current running account.

USR PLB:USR Number of users in
partition.

FLG PLH:FLG Partition control flags.

QN PLH:QN Quantum time of
partition.

TOL PLH:TOL Total jobs run in this
partition.

CUR PLH:CUR Current jobs selected in
this partition.

TL PLH:TL Lower time limit.

TU PLH:TU Upper time limit.

SID PLH:SID System ID.

Output 53

Table 19, Processot. Table Headings'
",

Heading- Solirc~ Mea~iri9':
,

~

, .
.' "

pH - Processor 'i ndex humber., .
p:NAME

; ,

' PiNAME Prc~,ess6r, ,A,a'me. \ No

" "

HPP PB:'riPP He~d of·pro~es$or;·s" physical page chain.
,e

of '~;~cess6rls physical chain. '-
TPP

"

PB:TPP loil page
" ~

PSZ PB:PSZ Processor IS procedure size in pages.

DSZ PB:DSZ Processor IS initial data size in pages.

DCBSZ PB:DCBSZ Size in pages of DCB area.

PDA PH:PDA Disk address of procedure.

DDA PH:DDA Disk address of data and DCBs.

UC PB:UC Use count on processor.

lNK PB:lNK First overlay number for this processor.

PVA PB:PVA Virtual page address of the processor IS procedure.

HVA PB:HVA First page available to the processor.

PC II PB:pclI Procedure cyl i nder number.

DCII PB:DCII Data cyl i nder number.

SA P:TCB Starti ng address and fl ags.
,

TCB P:TCB TC B address.

Table 20. AlLOCAT Headings

Heading Meaning

TOP Top index into buffer.

BOTTOM Bottom index into buffer.

WORDCNT Number of disk addresses in buffer.

TEMPBOT Set if AlLOCAT changing buffer.

BUFLAGS Bit 0 = HGP empty, Bit 1 = buffer iust filled, Bit 2 = buffer iust emptied.

ADJSTCNT N umber of entries manipulated by ALlOCATi may be either positive or negative

GRANULES AVAIL Total number of granules/cylinders remaining in system (in hexadecimal notation).

Output 90 31 13B-1{11/76}

Table 21. Va Table Headings

."
Heading " Mea;~ing"

CIT3-5 Channel Information T~bles 3-,5

DEVICE yyndd for thisdevi~e"
" "

ADDR Hardware address"

CX Channel index
,.;.

OIDTS From DCT3 - Set bits indicate:

0 output

I input

0 down

,

T timed out

S SIO reject

BPWXKCSB From DCT5 - Sets bits indicate:

B Device busy

P Clean-up pending

\w Wait until done
" -

'X Data transfer

; K Wait for key-in

C Control task

S SIO while manual

B BIN mode

QX I/O queue index

AIO Last AIO status

TDV Last TDV status

Table 22. Device Control Table Headings

Heading Meaning

,
OCT number.

DEV Active I/o address.

PRI Primary I/o address.

ALT Alternate I/O address.

CIT I Channel (CIT) index.

' ,

~-

I'

Tbble 22. Device Control Table Hecdings (cont.)

Heading

10 FLG

"DEV TVP

DEV FLGS

loa#

COW ADRS

PRE HAND

POST HAND

ACT CNTR

IOINT
DEADLINE

AIO INT STAT

TDV STATUS

CHAN FLNK

PRE-EMPT

IS

HAND CODES

TIME INCR

SIOCC

TDVCC

TIO STATUS

DISC FLAG

HGP DISP

RMA FLGS

SIO COUNTER

'.
Jv\eaning

I/O legality:

• , '~"" .~", v
"1-1 =in ~nd out

, --1:0 =: oU,t only

~1 ~ in only

Type :mnedlon i c.

Staf'e of device.

IOQ index.

Command doubleword address rNA
resolution).

Handler preprocessor word address.

Handler postprocessor word address.

Device activity counter.

Value to match against I/O
clock.

AIO status word.

TDV status doubleword.

Link to next entry.

Real-time pre-empt flag.

7446 table.

Handler function flags (first 8 bits
contain retry function code; the
second 8 bits contain the fol­
low on code).

Time-out increments.

SIO condition codes.

TDV condition codes.

TIO status.

Disk flag.

Heading Granule Pool (HG P)
displacement if disk.

Partitioning flags.

Number of SIOs done to this
device.

Output 55

HeQding,

BAK

fWD

OCT'

MNE

STAT

fCN

CaDS

DCBAD

BUF

Table 23. IOQ Table Headings

100 table number.

Back link to next,enf'rY~.

Forward link to neX't entry. . .-~. '.

'I; ',~

TEXT name ofde'vi~~'f.;'m SYSGEN.

Software status.

Original function code (lOQ4).

ClIrrent function code (005).

DCB word address (if any).

Buffer word address if bi t 0 and 1 reset;
CDW word address if bit 1 set (swapper);
CDW word address if bit 0 set (other).

Ta,ble 23 .. IOQ Table Headings (cont.)

TIM.

I'lRA

'NRT

RADAD

E AADR

E A INFO

PRIO

USER

, .
Meaning

Nu'm~er: of timeou't increments.

Number of commands used if IOQ8
bit O· or 1 set.

Original number of recovery tries.

Remaining number of recovery tries.

Disk address.

End action word address.

One word to return to end action
receiver.

Priority of this event.

User number of I/o requester.

Table 24. COC Line Table Headings

Heading Source Meaning

LINE Calculated li ne number.

USER lB:UN Associated internal user.

TYPE COCTERM Terminal type.

EOMTIME EOMTIME End of message time for a read.

BUFCNT BUFCNT Number of buffers in use for line.

CPOS CPOS Current carriage position.

RSZ RSZ Record size requested by user while read is pending.

MODE BYTES MODE-MODE4 Terminal mode indicators.

Tl Tl Pointer to tab buffer.

II COCII Input insertion pointer for line.

IR COCIR Input removal pointer for line.

ARSZ ARSZ Accumulated record size while read is pending.

CPI CPI Initial carriage position for a read.

01 COCOI Output insertion pointer for line.

OR COCOR Output removal pointer for line.

OC COCOC Count of characters pendi ng output.

56 Output

Tabl~ 25. AVRTabie Headings
-,.,.....

H€.oQding 'Meaning

SER' Serial 'n~ber of tape or pqck.

PUB Set if pubfh:::

..
POS Set if positioned.

AVR Set if A VRed.

SCR Set if scratch tape.

HLD Set if held.

PTL Set if positioned to. label.

UPL Set if user positioned label.

- -

·OPN Set if open.

NOU Number of users.

TPOS Tape mark count.

USER User number.

SOLICIT Index to special AVR tables.

INI Set if volume initialized.

VER Set if volume verified.

MTD Set if mounted.
< •• ,~

PRIM Set if primary volume of private
set of vo I urnes.

HGPDISP Displacement from HGP.

Table 26. Symbiont Table Headings

Heading Meaning

,
Index number of table.

SQUE Symbiont queue chain.

SNDDX DCT index of symbiont device.

TYPE TEXT name of symbiont device
from SYSGEN.

Table 26. SYIY1l?iont Table Headings (cont.)

Heading

SSTAT

SSIG

SRET

SCNTXT

SYMX

TYP

LNK

FLAG

SUSP

QUE

SQHD

SQTL

'-if '

Meaning:,

SymbiontStatus:

o = input symbiont

Symili o'.,t _ s'igna I character (e. g. ,
L, Q, etc.).

Symbiont return when activated
from chain.

Context block doubleword address
displacement.

Symbiont index:

1 = input

2 = output

Device type.

Remote cha in.

Remote flags.

Suspend bi t for IR 8T •

100 index for IRBT.

Symbiont queue chain head.

Symbiont queue chain tail.

Table- 27. TSTACK Headings

Heading Meaning

ADDRS Virtual address of displayed contents.

STACK OFFSET Index into stack.

CONTENTS Contents of stack.

RELATIVE LOC Address that stack contents point to,
in symbol plus displacement form.
If the stack cell contains a relative
location, the instruction at that lo-
cation will be displayed if it is an
address modifying instruction (e.g.,
B, BAL, LPSD).

INSTRUCTION Symbolic instruction at the address
contained in the stack position.

Output . 57

ANLZ ft~ESSAGES

Table 28 contains the mess~ges 'that eire output by ANLZ.
Most of these messages identify error conditions. Others·
merely supp!yinformation. . .

Tal;>le 29 summoriz·es ANLZ . commands. The left-hand
. column contains the command format, the right-hand column
contains the c(;mmcmd description.

Table 28. ANlZ Messages.

Message . Description

ANLZ HERE The ANLZ program has begun operation.

ANLZ: ENTER COMMAND, NIL SAYS TO DO ALL This message issued to operator after GJ OB ANlZ key-in.
Operator may respond with one of the fol rowing:

NO = just exit
TA = read recovery-built tape
HE = run interactively from console
CP = read CP5DMP file
0-7 = read indicated MONDMP fjle
NIL = do default ghost run

Ii

ANLZ GHOST FINISHED The ANLZ ghost has completed processing the core
image file.

ANLZ USING MONDMPn ANLZ has been commanded to read a MONDMP file.
The value specified for n indicates the number of the
MONDMP file.

BAD COMMAND The command was unrecognizable.

CANNOT OPEN FILE name The file specified l>y the INPUT command cannot be opened.

CAN'T GET THE BUFFER The user was not allowed enough core in his account to
read in the monitor symbol stack.

COUNT ERROR
The tail and last page in a chain do not agree.

TAIL ERROR

ENTER TAPE TYPE: 7T, 9T, BT, ETC ••• The user must supply the tape type if tape input is to be used.

..
ERR/ABN CODE = xxxx**dcb An Vo error or abnormal condition occllrred during an

INPUT operation.

xxxx is the error or abnormal code.

dcb is the address of the DCB associated with it.

lOCl > LOC2 The first location entered for a loc 1, loc2 (or similar) com-
mand was greater than the second location.

xx PRIVILEGE LEVEL NOT HIGH ENOUGH The user privilege level was not hi gh enough / for the
requested operation.

SORRY, NO PAGE xx The page containing the location specified by the user
was not found in the input fi Ie.

THE LAST PHYSICAL PAGE IN THE FILE IS xx The size of the file read from tape by the INPUT com":'
- mand is specified by the last physical page in the file.

58 ANLZ Messages/ANlZ Command Summary

TlJbie 29.! ANLZ Command Suinrr;ory
~"------~--~----'---------------~-------r~---~

Command Description t

*

AL[L]

SF fid

CL[OSE]

CO[MPARE],loc l,Ioc2

, Dumps the last location and is used in conneCi'io·n V.· ~-i·t-h-, '-o-c---l

and locI' lOci; .. ~

Dumps the indirect location and is used in conjunction with
loc and IO~ll loc2.

Performs tf\e functions of the INPUT, DISPLA V, and RUN
commands and of ANLZ (except dumps) when initiated
by the automatic recovery procedure. A numerically and
alphanumericatly sO'rted monitor map is output at the end of
the ALL display.

Specifies the name of the boot file that represents the monitor
being examined by ANLZ. The file M:MON in :SYS is as­
sumed by default.

Causes input dump file to be closed.

Compares the dump (locations loclthrough loc2) with the
running monitor and outputs the locations with nonequal
contents.

~--~~--.-----

, OE[LTA]

DI[SPLAV] option

Associates the debugger pelto with ANLZ.

Outputs information existing at the time of the crash. The
options are

AJ[ITS] -JIT, AJIT, and context area of all incore users.

AT [A BLE sl ~ncore portion of ALLVCATls tables.

AV[R] -tape and disk tables.

CI [TS] [, index] ••• -all or requested entries of Channe I
Information Tables.

: CO[c] [,index) ..• -all or requested entries of cae tables.
\

CU[N] -current user1s JIT, AJIT, and context area.

\ OC[T] [,index] ••• i-all or requested entries ~f Device
\ Control Tables.

EL[OG] -incore error log buffers.

FQ-Free I/O Queueing tables.

10[, chan] .•• -devices on requested I/O channels.

IQ[, index] ..• -a" or requested entries of I/O queueing
tables.

JIT[, id][, loc l,loc2] -contents of the JIT for the user
specified by id or for the monitor.

MR[, loc 1, loc2] -monitorls root.

OJ [IT] -all of the out of core JITs.

AN LZ Command Summary 59

Command

DI[SPLAY] option (cant.)

EN [D)

HE [LP]

IN[PUT] option

60 ANLZ Command Summary

Table 29. ANLZ Command Summary (cont.)

Descr:iption

os - user outS;,wap tables.

PA(RTITIONS](, index]. .• -all or requested entries of
part i ti on tab res.

,- PF[ILE] -patch file that was created last.

PM-page matrix identifying the owners of all pages.

PN-processor inswap tables.

PP, pageno[, loc 1, loc2] -contents of the indicated
physical page.

RA[T] -resource allocation tables ..

RE [GISTE RS] -software check code, software check mess­
age, and the first two register blocks.

RB[T] -remote batch tables.

RC[XT] -area of memory occupied by the reccveryroutines.

RQ -resource subqueue lists.

ST[ABLE] -output symbiont tables .

. SW[APPE R] -contents of the swap/swap schedul ing tables.

SY[MB10NT]-RBBAT recovery file.

TP -transaction processing tables.

TR[APS] -contents of trap and interrupt locations.

TS[TACK][, id] -temp stack of the user specified by id or
of the mon itor.

US[ER][, id] ... -user tables of the specified users.

VP, pageno[, loc 1, loc2] -contents of the specified virtual
page.

WHY -software check code and software check message.

Dumps specified range of addresses.

Exits from ANLZ.

Lists all ANLZ commands.

Directs ANLZ to input from a particular disk or tape file or
to open a fi Ie. The options are

LA[ST] - opens the last file formed by the recovery
procedure.

Table 29. ANLZ Command. Summary (cont.)
~

I Command Description

IN [PUT] opti on (cont.) n~mber; opens {he numbered c~ash file formed by the
recovery procedure •.

. .
TA[PE] - reads a labeled tape created by the recovery

procedure.
.

. , CP[SDUMP}- Gpens the CP5DUMP file •

IS Reads the sorted ~ymbol table from a previous ANLZ run. ,

l:.i ne Feed (or carri age return) Dumps the contents of the next location and is used in con-
iunction with loc and loc l' loc2.

loc Outputs the contents of the specified location.

loc
l
,Ioc

2
Outputs the contents of memory locations between loc

l
and loc2.

loc = value Places the value in the specified location of the running
,monitor.

LP(rowsJ Directs the output of ANLZ to the line printer, where rows
is dump width in hexadecimal words. Default is full line.

MA[P], id Loads the map of the specified user if his J IT is in core.
I

MO[NITOR] [DI[5PLAY]] Turns the monitor display mode on and off.

MONITOR turns the display mode off.

MONITOR DI5PLA Y turns the display mode on.

NO[oELTA] Disassociates the debugger Delta from ANLZ.

PR[INT] Closes the output symbiont file to allow output to the line
'. printer without requiring a return to TEL.

RO[WS], value Establ ishes width of dump output in number of words, where
value may be 1 through 12.

RU [N] option Outputs various linked lists of the monitor by running through
the I ist and displaying each entry. The opti ons are

MO[NITOR] ~ {!gnol] - monitor pages. 5, the default,
indicates all. A spec i fi c page
may be requested.

PR[OCESSOR] ~ {~ame~ - processor pages. 5, the de-
fault, indicates all. A par-
ticular processor may be
specified.

RT - real-time page chains.

ST[ATE]~ {!#~ - state queues. A particular queue
number may be specified, or S, the
default, indicates all.

ANLZ Command Summary 61

Table 29. ANLZCommahd"Summary (cont.)

.command Description· .
. .

RU(N] optio~ (cont.) US[ER]~ nd~ .- user pages for a particular user (id), or
. for all users (S). S is the default.

,.

XD[ElTA] - XD~l TA's page chains.
::

SE[ARCH], value,loc l,Ioc2 . Searches for andQufp'~ts all words between loc) and loc2 that
contain the value under the mask.

., .)

:

SM(ASK], value Sets the mask to the specified value.

symbol/ Displays the contents of the monit~r location specified by
symbol.

SV[MBOlS] [fid] Creates a numerically sorted monitor map, using the fid spec-
ified or MONSTK. :SYS.

UC~ows] Directs the output of ANlZ to the on-line terminal, where
rows is dump width in hexadecimal words. Default is full line.

UN[MAP] Turns off the mapping mode of operation.

62 AN lZ Command Summary

·5. ERROR MESSAGE FILE

INTRODUCTION

The error messages for the CP-V monitor and several CP-V
processors are contained in an error message file, called
ERRMSG. Thi$ file is initial!y created either through
punched card, or on.-line 'terminal input and "isnlointained
through use of the Edit processor. This chapterde~cribes
the structure of the ERrMSG file and the techniques
required to create and mQdify the file.

Codes for detected error conditions are recorded in the job
information table (JIT). The error code is placed in J:ABC
(high-order byte) and the subcode is placed in ERO (right­
justified). When CCI (batch jobs) or TE L (on-I ine jobs) is
entered, a message is printed to correspond to the code and
subcode. This message is obtained from the error message
file (ERRMSG) via a keyed read using a key constructed
from the group code, error code, and subcode. If either
the file or the record corresponding to the code is missing,
the error code itself ~ill be printed. Otherwise, the mes­
sage and the error code will be printed.

FORMAT OF ERROR MESSAGE FILE

Each record in the errdr message file· contains the EBCDIC
text of one error message. The key of each record is one
word long and has the form

The first byte always contains 03, which is the count of
bytes in the key. The second byte is the group code, the
third is the error code, and the fourth is the error subcode.

Group codes presently assigned are

o Monitor 5 CCI

PCl 6 DRSP

2 loader 7 Batch

3 TEL 8 Analyze

4 Runner

Messages in the file with group codes other than zero are
not handled by the monitor itself. Error codes currently
assigned within the monitor group are

o - 7F I/O error and abnormal codes

80 - 9F COBOL error codes

AO - BF Other Monitor codes

co - FF Unused

The meanirigof the assigned codes are definedil1 CP-V/TS
Reference Manual, 900907, CP-V/BP Reference Manual,
90 17 64, and. in' the AN'S COBQL/LN Reference Manual,
90 15 00.

CREATING ERROR MESSAGE FILE

The ERRMSG file is initially entered into the system either
through a card reader or an on-line terminar at the central site.
The procedures for each type of input are described be low.

Warning: If an installation modifies the text of TEL error
messages, it should be noted that TEL stores dy­
namic information in the error message buffer and
some of the text may be clobbered.

CARD READER INPUT

Card input of the error message file is handled by the Error
Message Fi Ie Writer (ERRMWR). This program reads cards,
interprets the first six columns as a hexadecimal number,
converts this number into a three-byte keYI and writes the
card image exclusive of trailing blanks as a keyed record
in the ERRMSG file in the account under which ERRMWR is
executed. This account should be :SYS for the system error
message fi Ie.

The card format is

1 2 3 456 789 10 11 12 13 14 15 16 17 18 19 20 21 22

Hex. code T ext of Message

GCECSC

Example:

Assume that the message ILLEGAL OPCODE is to be placed
in the error message file for the monitor error code AE. The
group code and subcode in this case are both zero. Thus,
the card for this message would be punched as follows:

1 2 3 4 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20

Hex. code Text of Message

OOAEOOI LL EGA L ope 0 D E

Keys generated by the E RRMWR program have the form

Error Message File 63

During conversion of the key, leading blanks ore treated as
zeros.' Nonhe~Qdecim.a'-letters result in output of owar~­
ing message an..d::€Cl;)S~ the card to be ignored. The card
imag'eis scanned from right to left to determine the rightmost
nonMan k character ,and the ' count '0 fch aractc,.s i socii usted
so thaftrc:Jiling blanks are not.y:riften. A newHne tharacter
X' 15J is appended to the: ~es'sage. ' , ','

The message may b~ ccmtinueciin ~Iurrln 1 Qf the' follow­
ing card by appending a conJ'nuaf1on c.ho"act.er (;) at the
end of the message in the first ctlrd., . Only two cards per
message ore allowed.

A card containing an asterisk in column 1 is a control card
and is used to set the format of the record written in the
file. If column 2 of the control card contains a 0, the
message key is appended to the front of the message text
and is incfuded in the record. If column 2 of the control
card contains a 1, the key is not included in the record
text (this is the default condition). Control cards can be
placed anywhere within the data deck except between
continuation cards.

64 Creating Error Message File

tERMINAL INF'tlT

.Creating 0(· modifying, .t~:e~r.r9r .message file can be ac­
complished from r~~ te('TIi~Q~by'using Edit or ERRMWR.

Examp~ 1: Us.ing Edit, ':. ,:~.~
. .. '" ~ ,

,iBUIL~Q4:MSG'9 ,,'
- ,.to .• " ,~

~ OOA~bo THAT'S"NO DEBUGGERI@)
< < ..{." ,

2~'OOO~OOABOl THAT'S NO OP CODE @)
.-,__ 1.;:, •

',' 3.000@

J.SET M:EI DC/MSG @

fERRMWR@)

Example 2: Using ERRMWR

JSET M:EI UC e
JERRMWR8

~OOACOl DONir ISSUE CAL3 OR CAL4 e

'6.', SYSTEf~1 ERtlOR lOG :FIL.E

All hardware malfunctions and ;~qme s?(tware prob~ems .'
occurring during system 'operat;on,.· whetrer recq.\~ered or.'
not, are recorded in a speciaL disk stor<lge file,~ ',4"-his fi Ie
is periodically copied into a standard"fiJe (ERRFtl~Jby a'
ghost program (ERR:FIl) which is initiated aulOina~i~(Jlly
for that purpose. . "

ERRFIlE may be :listed and summarized by the Error Log
listing processor thatj,~ de$~ribed in this chapter. ERRFILE
is also available for on-line preventive maintenance of
the system and for diagnosis and prediction of hardWare
malfunctions.

ERR:Fll. PROGRAM '

ERR:FIL copies the special file created by ERRLOG onto a
normal keyed file (ER,RFILE) in the :SYS account that is more
readily available to diagnostic programs.

ERR:FIL is a ghost job that is awakened by ERRLOG when­
ever five errors have been recorded. ERR:FIL may also be
awakened by a program with diagnostic privilege by using
the initiate job CAL (CALl,6 FPT)or by an operator key-in
of GJOB ERR:FIL.

ERROR LOG LISTING PROCESSOR

The Error L~g' Listing processor (ELLA) provides an efficient
tool for listing and sorting the error log file, ERRFILE, which
is automatically generated and updated by the CP-V system.
(ERRFILE is described in Appendix E.) ELLA o'utput furnishes
a meaningful and comprehensive diagnostic evaluation of
the system and its peripherals, aiding in the early detection
of productfailures and thus increasing the reliability, main­
tainability, and availability of the system.

The set of ELLA commands al lows the user to first specify
the kinds of errors in which he is interested, and then re­
quest a listing of those kinds. Four types of listings are
available: '

• A chronological listing of error log entries.

• A sorted listing of error Jog entries.

• A summary of error log entries by category.

• A summary of error log entries in graphic form.

Towards the end of this chapter, there is a section which
contains a set of predefined tasks that should be useful to
the person who needs periodic error log reports but has no
need for a more prec ise understanding of the ELLA processor's
command structure. (See II Predefined Tasks".)

STA.RTlNG EXECUTION

ELLA may be run' as 'an ori:..jJne,batch; or ghost job. Normal
, . ope~ating prpcedur~s' are ob'served in each of these modes.

Batch·and, on':'l ine operations ,are .illusfrated in Examples 1
and 2. These .first tw~ exOl\lp~~sar.e intended only for ELLA
users,who ore hot familiar with CP-V.

~"',... . ,

The use 'of ELLA is restricted to authorized system users whose
accounts have a diagnostic privilege level (AO or higher).
If the user has insufficient privilege, ELLA will abort with
the message

INSUFFICIENT PRIVILEGE LEVEL ABO~T

Note: Initiating ELLA as a ghost job enables the operator
to issue ELLA commands from the operator,'s console.
However, judgement should be exercised when ini­
tiating ELLA in this fashion since ELLA commands
wi" be intermixed with normal operator console
material.

INPUT/OUTPUT ASSIGNMENTS

ELLA input and output is divided into three separate
functions:

• Error log input.

, • User command input.

I

• listing output.

Error log input is always taken from the system error log file,
ERRFILE. Without user intervention, the remaining two
functions assume default assignments depending on the mode
in which ELLA is run. The default assignments are listed in
Tables 30, 31, and 32. (They are based upon the assumption
that the SI and LO operational labels weregiven the standard
assignments during SYSGEN.) The assignment of the output
listing function may be altered by the user during ELLA ex­
ecution through use of the ELLA SET command. The tables
specify the ELLA SET command formats that are required to
make the reassignments. The SET coml1land is described in
detail below.

I SET The SET command reassigns the listing and message
output device assignment during execution of ELLA. (It

,changes the device assignment in the M:LO DCB.) The for­
mat of the command is

SET, LIST, { LKPP}

where

LP specifies line printer.

KP specifies operator's console for the ghost and
batch, modes and on-line terminal for the on-I ine
mode.

System Error Log File 65

E>:cmp!e 1. Batch Operation of ELLA
-----------------_._--------_.--:----'----_._---

!JOB FEOPER, SITE 102, E

For batch operation of ELLA, control commands and ELLA commands are punched on cards and the cards are submitted
to the site operator.

In this example, the account number (FEOPER) and account name (SITE 102) were ch04n because they had been re­
served for diagnostic activity at that particular site. In order to run ELLA in the batch mode, the account was
authorized a privilege level of AO. (The privilege level is not specified on the JOB card because it is automatically
associated with the account.) The execution priority E was specified to given the job a high execution priority. (The
privilege level determines the types of things that a jab is of/owed to do; the execution priority is a determining fac­
tor in how quickly a job wi II be selected for execution.)

Example 2. On-line Operation of ELLA

XEROX CP-V AT YOlffi SERVICE
ON AT 13:48 JUL 08, '74
LOGON PLEASE: FEOPER,SITEI02,RSDEJ

lELLAEJ
13:49 JUL 08, '74
ELLA 7080D6-AOO
* .

~END@
IPRINT e

lOFF@-

In this example, the user logged onto the system after receiving the CP-V salutation and log-on request. The account
number and name used are the same as in the previous example. (The account was authorized for both batch and on­
line operations.) The account has a password associated with it which is to be used for security reasons during on-line
operation; i.e., if the password is kept confidential, it prevents unauthorized on-line use of this special diagnostic
account. The password is entered following the name and account. Here, the password RSD was entered.

66 Error Log listing Processor

After the log-on, C P-V prompte'd' for input with an exclamotion point. The user entered

ELLA8

to request the Error Log Listing program end EL~A respond~dviith its salutation and pr:qmpted for input with an asterisk.
The user then entered ELLA commands, finishing with the END command whiCh returned control to the system. The
system then prompted with an exclamation: point., (A!=tuaHy, control was 'returned 'f6 a system c.omma~d, processor
called TEL which is described in detail iA the cp-v/Ts Reference Manual, 90 09 07.)

ELLA can output its listing on the user's ter~inal or on the f'ine printer. If printer output is selected, the system holds
the output on a disk fife until either the PRINT or OFF command is entered. In the example, the usei' executed the
PRINT command which caused the system to produce the printer output. The user then proceeded to perform' other
tasks, eventually ending theon-line session with the OFF command which Jogged the user off the system.

, INPUT/OUTPUT CHARACTERISTICS

Whenever ELLA listing output is assigned to the line printer,
the output contains two additional types of information:
user commands received and diagnostic messages. ELLA
user commands are listed on the printer to present a com­
plete record of the user listing session. They are preceded

by one asterisk. Diagnosti c messages (due to abnormal con­
ditions or operationaf errors) are preceded by two asterisks.

Whenever the command iJ.1put function is assigned to the
operator's console (ghost initiation of ELLA) or the user's
terminal (on-line initiation), diagnostic messages are
printed on that input device (preceded by two asterisks) as
well as on the line printer.

Table 30. ELLA On-line I/O Functions

Associiated
ELLA SET

Default Possible Reassignment
Function DCB: Assignment Assignments Command Comments

Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source. records
... error log for printing •

Command M:SI User's User's {none} Device from which ELLA reads commands (and
input terminal terminal to which it prints diagnostic messages).

list M:LO User's User's SET, LIST, KP Device to which ELLA lists error log data.
output terminal terminal

line SET, LIST, LP Device to which ELLA lists error log data, com-
printer mands received, and diagnostic messages.

Table 31. ELLA Batch I/O Functions

ELLA SET
I Associated Default Possible Reassignment

Function : DCB Assignment Assignments Command Comments

Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source records
error log for printing.

Command M:SI Card Card (none) Device from which ELLA reads commands.
input reader reader

list M:LO line Line SET, LIST, LP Device to which ELLA lists error log data, com-
output printer printer mands received, and diagnostic messages.

Operator's SET, LIST, KP Device to which ELLA lists error log data and
console diagnostic messages. (Using the operator's con-

sole for lengthy output is not recommended.)

Error log listing Processor 67

.L

Table 32. ELLA Ghost I/O Functions
r------'---

I ELLA SET
Associated Default Possible . Reassig:nment

Funcl-ion DeB Assignment Assignments 'Comrn~nds Comments
,~

~--.-- -
Source M:BI ERRFILE ERRFILE (none) Data base from which ELLA reads source records
error log for printing.

Command M:SI Operator's Op~rator's (np,ne) Device from which ELLA reads commands (and
input console console to which it prints diagn~stic messages.)

1-----

list M:LO line Line SET, LIST, LP Device to whic" ELLA lists error log data, com-
output printer printer mands received, and diagnostic messages.

Operator's SET, LIST, K P Device to which ELLA lists error log data and
console

INTERRUPTING ELLA EXECUTION

On-line ELLA execution may be interrupted at any time by
use of the BREAK key on the user's terminal. This causes
ELLA to terminate its current activity and to prompt for a
new command.

When ELLA is initiated as a ghost job or a batch job, ex­
ecution may be interrupted through use of the operator INT
key-in. The effect upon a ghost job is similar to that of the
BREAK function on-line. The effect upon a batch job is to
cause the next command to be read from the card reader.

ELLA COMMANDS

ELLAaccepts three types of commands: boundary commands,
task commands, and the device assignment command (SET,
described previously). Boundary commands establish or
change the limits that are to be applied to all subsequent
task commands; i. e., boundary commands allow the user to
specify the types of errors in which he is interested. Task
commands initiate the execution of a particular type of list­
ing. The device assignment command is used to change the
listing and message output device during execution of ELLA.

TASK COMMANDS

Task commands are used to request the ELLA displays and to
terminate ELLA. ELLA task commands are:

CllS produces a chronological listing of qualified
error log entries.

68 Error log Listing Processor

diagnostic messages. (Using' the operator's con-
sole for lengthy output is not recommended.)

SLIS produces a sorted listing of qualified error log
entries.

SUM produces a categorized summary of qualified
error log entries.

DISP produ~es a ~ummary of qualified error log en-
tries in graphic form.

END terminates ELLA.

Note that error log entries are displayed only if they qualify.
To qualify for inclusion in a display, an error log entry
must pass 5!!! boundary tests in force at the time the display
is generated. If no boundary commands have been entered,
all error log entri es qual ify. Those error log entries which
fai I to pass one or more of the boundary tests are ignored.
(Boundary commands are described following the task
commands.)

ells The ells command requests a chronologicar list­
ing of the error entries in the order in which they appear in
the error file.

The format of the ells command is

C[L1S]

An example ofa ells listing is given in Example 3. Table 33
lists the error log entry headings printed by ELLA and notes
the manner in which all values are printed.

Example 3. Use of the CLIS Command

In this "example, the USer chose to initiat~' ELLA on-li~~. :The user did not desire a lerrgthy listing at his terminal.
Therefore he reas~igned the listing function to the linepriRrerusing the SET command.

!ELLA@)
*SET , LIST, LP @)

~CLIS@)
*END@
lPRINT@)

After the CLIS com~and was issued, ELLA produced the' ~hronofo9ical listing and then prompted for another command.
The user desired no further listings, so he terminated ELLA with the END command. He then issued the system PRINT
command which cau~dthe listing to be output to the printer. The output that was sent to the line printer is shown
below: . ,

C H RON 0 LOG I CAL LIS TIN G

FROM 00/00/00 00:00:00:000
TO 12/31/99 23:59:59:999

••• SYSTEM IDENTIFICATION •••
CORE -oPTIONS-----~-------------TIME

. TIME (K) SITE 1.0. SYSTEM CPU SYMB RT RB ONLN TP HP RES
11:36:00:000 00128 PRT101 CP-V COO S67 y y y y Y Y 02

••• CONFIGURATION •••
I/O ADRS DCT

TIME r-mL PRIM ALTN INDEX
11:36:00:000 7012 0001 0001 01

7140 0003 0003 02
7160 0004 0004 03
7445 0002 0002 04
7212 01FO 01FO 05

'11:36:00:000 7322 0080 0080 06
7322 0081 0081 07
7271 OOEO OOEO 08
7271 00E1 00E1 09
7271 00E2 00E2 OA

11:36:00:000 7271 00E3 00E3 OB
7611 0010 0010 OC

••• TIME STAMP ••• DATE = 0 7/1 0/74 TIME=12:00:00:004

••• SIO FAILURE •••
I/O ---SIo- ---TOV- SUBC TDV CUR REM

TIME MDL ADRS STAT CC STAT CC STAT COMM DA BYTES HFI
12:36:30:782 7323 0083 2000 6 1000 6 00 0011B7 0001 Or)
12:37:29:518 7323 0083 2000 6 1000 6 00 0011B7 0001 00
12:40:10:398 7323 0083 2000 6 1000 6 00 0011B7 0001 00

Error Log listing Processor 69

*** Tn·ill STAHP •••
"".'" Tn.m ST1'>_H~~ ***

DNrE:::07/10/74 TIHE=13:00:00:00S
DATE=07/10/74- Tlr.1E=14:00:00:003

***SYMI3I-ONT XNCONSISTENCylit ••
PCT " PEL. 'SYMB.

TIME INDEX SECT. OCT
14:03:13:648 09 ·0110 02

.** TIME STAMP *** DATE=n7/10/74
*** TUm STAMP ••• - DATI>:() 7/1 0/74_

TIHE=15:00:00:004
TII1E=16:00:00:006

Note that the CLIS command is rist~d in the line printer listing and that the existing time boundarie~ are printed after
the title. If other boundaries were in force, they too would have appeared. Certain values, such as core size and
recovery count, are printed in decimal for convenience. Other fields, such as the OPTIONS field, contain flags.
The true condition is represented by the fetter Y, the false condition by the letter N. In this example, the system
has symbiont capability but does not have remote processing and real-time facilities.

Table 33. Error log Entry Headings

Heading Description

ACCOUNT The account (eeeeeeee) in which the faulty file resides.
eeeeeeee

---AID- A hexadecimal number (xxxx) representing the AIO device and
STAT CC operational status bytes (STAT) and a hexadecimal val ue (x)
xxxx x representing the condition code (CC) returned as the result of the

AIO instruction.

CL A hexadecimal value (xx) representing the cluster portion of t~e
xx unit address.

CONTRLR A flag (f) indicating whether or not the controller is partitioned in
f addition to the device. Y means the controller is partitioned; N

means it is not partitioned.

CORE Core size in decimal thousands (dddd).
(K)

dddd

COUNT The number of entries (in decimal) that duplicate the previous entry.
dddd

CPU CPU type (ddd).
ddd -

CPU CPU hardware address.
ADRS
xxxx

----CUR COMM DW-- Two hexadecimal numbers (xxxxxxxx) representing the command
1 2 doubleword currently being processed for a device.

xxxxxxxx xxxxxxxx

DATE The month (mm), day (dd), and year (yy) that the error log entry
mm/dd/YY occurred.

DCT A hexadecimal value (xx) indicating the order in which the device is
INDEX configured into the system at SYSGEN. The index value for the first
xx device is 1.

70 Error Lpg Listing Processor

Table 33. Error log Entry Headings (cont.)
-

Heading Description

ENTRIES A decimal value (dddd) representing the number of error Jog records
LOST lost when 'tc'gging hecan;le temporarily, impossjble f~~,a.~y reason.
dddd

ENTRY A decimal valu.e (dd.dd) representing the number of ennies in the
COUNT enqu~u'e table belohging to the specified user at' the time the error
dddd log entry was made.'

,-

ERROR A hexadecimal value (xxxx) giving the error type code for the failure.
CODE See Appendix B, IIMonitor Error Messages" in the CP-V/BP Reference
xxxx Manual, 90 1764, for error code definitions.

ERRLOG--- A hexadecimal value (xxxxxxxx) representing the caller's address to
CALL ADRS which the error logging routine will return when logging is completed.
xxxxxxxx This is used in isolating software faults.

FILE NAME The name of the fi Ie in which a fault has been detected.

---HIO- A hexadecimal value (xxxx) representing the status (STAT) and a
STAT CC hexadecimal value (x) representing the condition codes (CC) re-
xxxx x turned in response to an HIO instruction.

--INDEX-- The hexadecimal offset (xxxxxxxx) into a 64-word block in ERRFILE
BAD ENTRY that locates the first word of the incorrect entry.
xxxxxxxx

I/O A hexadecimal value (xxxx) representing the physical I/O address.
ADRS
xxxx

I/O A decimal value (dddddddddd) representing the number of SI G
COUNT instructions executed for a device. This value is reset at system boot

dddddddddd time and is not reset at recovery (i.e., it is reset for system start-up
types 1, 2, and 3; see START TYPE in this table).

I/O ADRS A hexadecimal value (xxxx) representing the primary I/O address
PRU1 ALTN (PRIM) by which a device can be referenced, and another hexa-
xxxx xxxx decimal value (xxxx) representing the alternate address (ALTN) for

dual access devices.

--I/O-- A hexadecimal value (xxxx) representing the status (STAT) and a
STAT CC hexadecimal value (x) representing the condition codes (CC) re-
xxxx x turned in response to an I/O instruction.

LOCATIONS One to fourteen hexadecimal values indicating the ~ddresses of the
xxxxxxxx first fourteen {or less} memory locations exhibiting parity errors.
xxxxxxxx

· · ·
--MEMORY STATUS-- Two hexadecimal values (xxxxxxxx) representing the status returned

1 2 in response to an LMS instruction.
xxxxxxxx xxxxxxxx

---MEMORY STATUS WORDS---- Three hexadecimal values (xxxxxxxx) representing status returned in
1 2 3 response to an LMS instruction.

xxxxxxxx xxxxxxxx xxxxxxxx

MDL A decimal number (dddd) that uniquely identifies peripheral devices
dddd

"

by the Xerox model number (defined at SYSGEN).

Error log listing Processor 71

Heading

NFl';.

xx

MODE
d

Table 33. Error log Entry He&ding~,(con~;.)

f Description'

. A hexadic'ima'j- .~~'ue t~J rep~~senti~g the<G'~~rent state; of the
, memory fault iridicaro.rs rytum.ed. by fhe'hG:lrdware in response to an

RD instructicn. All 1J1~mory fau(r.indi201~rswi n be reset. (Sigma 6
and 7 only.) ~.' I ,,'

: ••• '._ '. :'".. ..t . • '.
A.?ecimal,v.qlue (d};eflcoding the mode in which the fife was opened
where.l 1 \;. IN' ·2",~bUT· 4 -INOUT' 8 - ,OUTIN.
.' . , ' .. '. '?-' I ,

~------------------------------~~~--~~'~''''~;~~':--'~~'--'~---;
- -OPTIONS --
SYMB RT RB ONLN TP MP

f f f f f f

ORG
d

PAR
ERRS
xxxx

--POLL­
STAT CC
xxxx x

POLR
RESULTS

xxxx

------PSDW-------
1 2

xxxxxxxx xxxxxxxx

RB:FLAGS
xxxxxxxx

REAL
! ADRS

xxxxxxxx

RECOV
COUNT
dd

REL.
SECT.
xxxx

RELATIVE­
SECT.ADRS
xxxx

72 Error log Listing Processor

Indicates whether or not the following facilities ar~~J'vajfabJe in the
system: symbiont routines (SYMB), real-time processing (RT), remote
processing (RB), orf:~Jine facilities (ONLN), multiprocessing facilities
(MP), and transacf;ion processing functions (TP). The flag (f) is equal to
Y (present) or N (absent).

A single dedmaldigit that indicates the file organization where:
1 - consecutive; 2 - keyed; 3 - random. '

A hexadecimal value (xxxx) representing the number of memory
locations exhibiting parity errors after a memory scan.

i)

A hexadecimal value (xxxx) representing the processor fault status
(STAT) and a hexadecimal value (x) representing the condition
codes (CC) returned by the hardware in response fo a POLP or
POLR instruction. '

A hexadecimal value (><xxx) representing the processor fault status
as returned by the hardware in response to a POLR instruction;

Two hexadecimal numbers (xxxxxxxx) representing the contents of
the program status doubleword.

A word containing bits which define the current state of processing for
the failing remote station. The meanings of the bits are defined in
Table 32-1

A hexadecimal value (xxxxxxxx) representing the actual memory
address. In an unmapped system, this is the same as ,the IA field
of the PSD.

A decimal value (dd) which is set to zero at system initialization and
incremented by one for every system recovery.

A hexadecimal value (xxxx) representing the relative sector at which
the inconsistency was detected

A hexadec imal value (xxxx) representing the relative sector number
at which the inconsistency was detected. A relative sector is 256
words long with each sector on a given device being numbered from
zero through device end. CP-V maintains file pointers by relative
sector number to expedite addressing different devices.

Table 33. Error 'LOg Entry Headings (cent.)

.----~---'~'_r I',
Heading D~scription

~----~------------------~--------~--+-~'~~------------~----------------------------------~
REM
BYTES
xxxx

-RE1RY­
REQ REM

dd dd

RPI RP2 RP3 RP4
xx xx xx xx

SCREECH
CODE

xx

SEEK ADRS
xxxxxxxx

---------SENSE INFORMATION--------­
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

---510-
STAT CC
xxxx x'

SITE 1. D.
eeeeeeee

START
'lYPE
xx

SUB
CODE
xx

SUBC
STAT
xx

A.I~~x~'dedmal vai~~(xxxx)representing the rem~ining byte count,
, as re't~r~ecf'in resporis~-iQ a TDV,instnJction. " ,-.- '-

1·'

A two difjit d~cim61 'number (ddYrepresenting the maximum number of
; 'retries. (REQ)'aft>f1r ~hich.'a devi~e errqris rehJ,rri~d to requester (value

,(tbta'ill~d, fro*:f~queste.r~s' OC ~), ~nd aJ)other tV'o':"d ig it val ue (dd)
represe:riH'ng 'r~ttrt'equest minuf the number of entries attempted (REM).

: The range is between retry request and O. A 0 value indicates the
operation was term inated due to retry count rundown.

'RPl through RP4 have unique meanings for each type of remote
terminal. See Tables E2 through E7 of Appendix E.

The hexadecimal code (xx) used by CP-V to identify. the system
failure that has occurred. See Appendix C.

A hexadecimal value (xxxxxxxx) representing the physical disk
address last used to access this device.

A hexadecimal value (xxxxxxxx) representing the diagnostic infor­
mation returned from the device as a result of sending a "sense" order
to the device. The value has a 4-word maximum, depending on the
device.

A hexadecimal value (xxxx) representing the status (STAT) returned
in response to an SIO instruction, and another hexadecimal value
(x) representing the condition codes (CC) returned.

An EBCDIC value (eeeeeeee) identifying the site (specified at
SYSGEN).

A hexadecimal value (xx) indicating the degree of initialization:

1 - PO boot (initial)
2 - PO boot under the files
3 - System device boot (no recovery)
4 - System recovery
5 - ()perator recovery

A hexadecimal code (xx) that differentiates several similar CP-V
software check codes. See Appendix C.

A hexadecimal value (xx) representing the status (STAT) of the I/()
subchannel received as a result of a TOV instruction. The first byte
of the second word of the status received from the device is:

II!
where bit 1

bit 2
bit 3

indicates bus check fault if set to one.
indicates control check fault if set to one.
indicates memory interface error if set to one.
(Xerox 560 on I y).

Error Log listing Processor 73

Heading

SUBTYPE
xx

SYMB.
DCT
xx

SYSTEM
CP-V eee

TDV CUR
COMM DA
xxxxxx

!

---TDV-
STAT CC
xxxx xx

TIME
hh:nun:ss:nnn

TIME LAST
DUPLICATE
hh :mm:ss :nnn

TIME LAST
LOST ENTRY
hh :nnn: S8 :nnn

TIME
RES
dd

---TIO-
STAT CC
xxxx x

--TRAPPED--
INSTRUCT CC
xxxxxxxx x

---------TRAPPED-----
INSTRUCT CC EFF.ADRS
xxxxxxxx x xxxxxxxx

74 Error log listing Processor

Table 33. Error log Entry Headings (cont.)

Description

Ahe)(adecimal value (xx) indicating the "type of copy error that
occurred. Type 01 indicates read erro,r; i.e.~ the ghost ERR:FIL re­
ceived an error indication wh,en reading the original error fi Ie.
Type 02 indicates read error end, me~ning that subsequent error log
entries were correctly read from the original error file. Type 03 indi­
cates a length error; i.e., the original error file record length was
incorrect •. Type 05 indicates incorrect time; i. e., the time of the
following entry is either out of range or goes backward. Type 06
indicates illegal entry type; i. e., the type code of the following
entry was found to be illegal by the ghost ERR:FIL.

A hexadecimal value (xx) representing the order in which the sym­
biont device is configured into the system; i. e., the OCT index of
the symbiont device.

Displays the operating system name (CP-V) and three EBCDIC char­
acters (eee) representing the system version specified at SYSGE N.

A hexadecimal value (xxxxxx) representing the current command
doubleword address returned in response to a TOY instruction. The
address is in doubleword form. Therefore it should be multiplied by
two to obtain the absolute word location.

A hexadecimal value (xxxx) representing the status (STAT), and a
hexadecimal value (x) representing the condition codes (CC) returned
in response to a TDV instruction.

The time the error occurred, in hOl;lrs (hh), minutes (mm), seconds (ss),
and milliseconds (nnn).

The time in hours, minutes, seconds, and milliseconds at which the
last duplicate of the preceding entry occurred.

The time of occurrance when the last entry was lost in hours, min­
utes, seconds and milliseconds.

A decimal value (dd) in milliseconds representing the resolution of
the time field of all error log entries; e.g., if the time resolution is
2, then the time value for all error log entries is accurate to two
milliseconds.

A hexadecimal value (xxxx) representing the status (STAT) and a
hexadecimal value (x) representing the condition codes (CC) returned
in response to a TIO instruction.

A hexadecimal value (xxxxxxxx) representing the contents of the
location pointed to by the trapped instructionls address (INSTRUCT)
in the PSD, and another hexadecimal value (x) representing the trap
condition codes (CC).

A hexadecimal value (xxxxxxxx) representing the contents of the
location pointed to by the trapped instruction IS address (INSTRUCT)
in the PSD; a hexadecimal value (x) representing the trap condition
codes (CC); and another hexadecimal value (xxxxxxxx) representing
the final address (EFF.ADRS) computed for the trapped instruction.

",Table' 33. Error Log Entry Headings (cont ~)

Heading I?~scription
, ,

UN

..
A hexadeci~Q! value (xx) representing the unit portion 6f the Xerox

xx 5W unit address.'
"

UNIT A two':"to-~ur'EBCDlC character mnemonic name identifying one of
NAME the followin~: CPU;. MI (Memory Interface); PI (~rocessor Interfaceh
eeee MIOP (Multiplexed Input Output Processor); RJ\~P (Rotating Memory

Processor); CT (Communication Terminator); SU (System. Unit).

USER A hexadecimal value (xxxx) which is a unique number assigned by
I.D. the system to the particular iob ~r session.
xxxx

USER A hexadecimal value (xx) representing the index into internal system
NO. tables used to access user-specific information.
xx

VOLUME Four to six EBCDIC characters (eeeeee) that a user has supplied to
SERIAL identify a tape or private disk pack.
eeeeee

WORKSTATION A one to eight EBCDIC character name which defines the identity
. NAME and' characteristics of a remote station to the system. A workstat ion

eeeeeeee name is not necessarily associated with one fixed physical terminal.
The workstation name is specified when the remote terminal logs on.

message An operator message of up to 72 alphabetical characters.

Table 34. RB:FLAGS Structure

Bit Name 7670 2780 IRBT Meaning

0 BPBIT x x Block protect toggle (ACKO/ACK1).

1 IGBIT x x x Cards after IFIN were ignored.

2 MORBIT x Waiting for next portion of deck.

3 HUBIT x x x line hung up.

4 PUNBIT x Punching is allowed.

5 DC BIT x x x WSN specified at SYSGEN.

6 HASPBIT x x x IRBT line.

7 SLVBIT x This system is slave.

8 ALBIT x x x RBLOG key-in done.

Error Log listing Processor 75

Table 34. RB:FLAGS Structure (cont.)

Bit Name 7670 2780 IRBT Meaning

9 XP1BlT x Xl specified in Super.
, ... ',

10 2780BIT x x x 2780 line (may be changed to IRBT at logon).

11 IBMBIT x N3 specified in Super.

12 DIALBIT x x x DIAL specified at SYSGEN.

13 EDISBIT x x x ERROR MAX on line.

14 OFFBIT x x x Do not connect line (RBX) - Set except at logon
for IRBT.

15 RBXBIT x x x Disconnect line now.

16 DUPSIT x x x 1 - full-duplex; 0 - half-duplex.

17 DISC BIT x x x Disconnect when output done.

18 LOFBIT x x x RBDISC sent (temporary setting).

19 SYSBlT x x x :SYS jobs legal.

20 HALBIT x x x HOLD all flag set.

21 CLKBIT x Wait before ACKO-idle.

22 ACTBIT x x x line logged on.

23 CRTBlT x RBBA T disables RBSSS.

> • ~'.'. ~

24 XP2BlT x X2 specified in Super.

25 OADBlT x x x Set OFFBlT after disconnect.

26 FIABIT x x x RBCC altered the stream status.

27 SSSBIT x Inputting with output suspended.

28 LIPBIT x x x Logging on.

29 FINBIT x FI N has been read.

30 EMBIT x x 1 - NOEM specified; 0 - EM specified.

31 OBBIT x Old BCB was read.

31 FRBIT x Initial read of file.

76 Error Log listing Processor

SLiS A sorted _ listing is requested wi-th the SlIS
command. The command has the form

Sl[IS] ,

As in the chronological listing, the sorted Ii'sting includes
all qualified error log entries. In'this listing, however,
entries are ordered by their type, and if they are peripheral
class errors, by their model number and I/O address also.

Error records are firsfcategorized by ELLA as system, pe­
ripheralor secondary records, (see Table 35). System records
and their associated secondaries are listed first. Except for
the system ID record and configuration record (Y{hich are
printed in front of all other records), syst~m records are
listed in ascending type cOde ord~r as given in Table 35.
Secondary records are printed folloV{ing their associated
primary records.

Peripheral class records are sorte~ in three phases. They are
first separated by model number and p'rinted in ascending
model number order. All peri pheral records wi th the same
model number are then separated and listed in ascending

device address order. Finally, all the records containing
both the same device address and the same mode! number are
printed in ascending type code order. Any secondary rec··
ords associated with peripheral class entries are' printed

,following the associated peripheral records.

Any secondary record. that appears in the error fi Ie that can­
not be linked with a primary_ record through the above rules
of association wit (be printed after all peripheral records
and their associated secondaries under the heading

»>UNASSOCIATED SECONDARIES«<

Each time a record is listed that has a different device
address than that of the preceding record listed, a Model
Number/Address heading is produced under the heading

»>MODEL NO. :xxxx VO ADDRESS; xxxx

where MODEL NO. is the 4-digit Xerox model number
designation of the device and I/O ADDRESS is the 4-digit
(hexadecimal) I/O address of the device.

An example of a sorted listing is given in Example 4.

Table 35. Error log Entry Types

Type
Name Code Description

System Class

COpy ERROR 10 Recorded as a result of error conditions in the error logg ing
mechanism. The particular malfunction is identified in the
subtype field (see SUBTYPE in Table 32). If the record sub-
type is 03, 05, or 06, the record is followed by the 64-word
buffer in which the error occurred.

PARITY ERROR 17 Recorded when program execution is interrupted to loca--
tion X'56' (MFI) on Sigma 6 or 7 or is trapped to location
X'4C' (parity trap) on Sigma 9 or Xerox 560.

SYSTEM STARTUP 18 Recorded when the system is booted and at each recovery.

WATCHDOG TIMER 19 Recorded when program execution traps to location X'46'
due to a watchdog timer run-out condition.

FILE INCONSISTENCY lA Recorded when the operating system cannot access a file in
the file managementsystem. Thecode displayed is described
in Appendix Bof the CP-V/BP Reference Manual, 90 1764.

SYMBIONT INCONSISTENCY 1B Recorded when the operating system cannot access a
symbiont file in the symbiont file management system.

INSTRUCTION EXCEPTION 10 Recorded when program execution traps to location X'4Q'
on Sigma 9 or Xerox 560 due to an instruction exception
condition.

LOST ENTRY 1E Recorded when error fog buffering constraints, timing
considerations, and error detection rates force error log-
ging to be temporarily suspended or otherwise impossible.

Error log Listing Processor 77

Table 35. Error log Entry Types (coot.)

Type
Name

..
Code Description

"

Sy~fe~(na~s (ctmt.)
"

POVv'ER ON 20 Recorded when the hardware power monitor forces
program execution to trap to location X'51' as a result

~ of detecting a restoration of power condition. This
normally occurs as a result of a power outage of 500
milliseconds or more in duration.

CONFIGURATION 21 Peripheral device configuration data recorded when
ERRFIlE is entered.

SYSTEM IDENTIFICATION 22 System information recorded when ERRFI LE is entered.

TIME ST AJv\ P 23 The date and time wh ich is recorded when E RRFILE is
entered in the system and every hour on the hour.

BAD GRANULE RELEASE 24 Recorded when either QJbad disk address has been de-
tected or when the granule to be released is already free
(dual allocation).

REMOTE PROCESSING 26 Recorded when an error is detected in the transmission of
ERROR data to or from a remote processing workstation.

OPERATOR MESSAGE 27 A message entered by the operator through use of the
- '

ERSEND key-in.

;..,.8.

PROCESSOR FAULT INTERRUPT 30 Recorded when there is a processor fault interrupt (loca-
tion X'56') on the Xerox 560.

MEMORY FAULT INTERRUPT 31 Recorded when there is a memory fault interrupt (loca-
tion XI 57') on Sigma 9 or Xerox 560.

PROCESSOR CONFIGURATION 41 Processor configuration from Configuration Control Panel
(Xerox 560 only) recorded when the system is booted.

ENQUEUE TABLE OVERFLOW 50 Recorded to log specific information after the operating
system has detected an enqueue table oxerflow condition.

UNKNOWN TYPE = xx xx An unknown type code xx has been encountered by ELLA
in an error log entry.

Peripheral Class

SIO FAILURE
~ 11 Recorded when the condition codes returned by the S10

instruction are such that either CCl or CC2are true. Con-
ditions that indicate lOP busy, or lack of operator action
such as IIdevice manual" may not be considered an error
condition (and in such case will not be recorded).

DEVICE TIMEOUT 12 Recorded when the time-out value specified by DCT11
has been exceeded.

78 Error log listing Processor

Tabla 35. 'Error Log Entry Typ~ (~o~t.)
,..--.-' ." -.......:..:...-. --

Type
Name Code ,~sc':iption

Peripher:al <;ioss (cont.')
~,

UNEXP., INTERRUPT 13 Recorded when no match can be found beotween the I/O
address returned in the status reg ister by the AIO instruc-

, ,

tion and any DCll I/O address' of a device known to be
busy. AIO CC = l1xx will not be logged.

DEVICE ERROR 15 Recorded when an I/O request is not successful upon one
of the specified number of retries. (It mayor may not
have eventually been successful.)

PARTITIONED RESOURCE ~, 51 Recorded when a resource has been partitioned from the
system.

RETURNED RESOURCE ·52 Recorded when a previously partitioned resource has been
retuTed to the system.

Secondary Data Clan

DEVICE ERROR 16 Recorded when nonzero sense data is available following
SECONDARY a device error.

DUPLICATE ENTRIES IF Recorded when the error logging mechmism detects
Identical consecutive errors. This prevents the error log
from becoming saturated with redundant information.

r-.---- -

SECONDARY POLL 32 Recorded for each nonzero poll status received by the
RECORD processor polling routines.

MEMORY PARITY 42 Recorded for each memory unit that has recorded an error
SECONDARY as doterminedby the memory polling routines (i. e., bits22-

\1""' •••• 31 of status word zero are nonzero) for Xerox 560.

MEMORY PARITY 43 Recorded for each memory unit that has recorded an error as
SECONDARY determined by tho memory polling routines (i.e., bits 22-

31 of status word zero are nonzero) for Sigma 9.

MEMORY PARITY 44 Recorded to log specific information obtained by scan-
SECONDARY ning memory to attempt to isolate locations which cannot

sustain correct parity.

MEMORY PARITY 49 Recorded to log specific information obtained by mem-

SECONDARY I
ory polling routines for ali machines, including infor-
mation used to attempt to isolate locations which
cannot sustain correct parity.

Example 4. Use of the SLIS Command

For this example, the following batch iob deck was submitted.

IFIN

lJoe, HOPER, SITE 102, E

90 31 138-2(9/78) Error log Listing Proc8S$Or 79

In the resultant sorted listing below, otlrelated entries 'are grouped 'tog<~ther. Thh faci"!itotes the: ~carn,in~ of the
error log that is necessary in order ,to d.etermine the common thoro~leristid of r?lated failures .thothovel'occurred
,o~~r 0 period of time. ',<' '.'

NaJe the OPERATORMESSAGtentr, '.in 'the !i:oii~g. ,Such' mcssa~{es' can 'be ~tete~ into the error log ,at the
operator's cqnsole by means of the. ERSENO key-in" (S-,. tneCP-VlOPS ~efer~f1c~' Manual, 90 16 75.)

'SLIS

S 0 R TEn LIS '1' I N G

FRO~ 07/10/74 12100,001000
TO 12/)1/99 23.59159.999

••• FILE INCONSISTENCY •••

TIME
16.0).1316118
16,112132:197

ACCOUNT
171731
771731

OCT
INDEX
09

RELATIVE
SECT ADM
0110

EIUlOR
~ODE ORG CODE
01 02 757P'

09 0110 01 02 757P'

••• TIME STAMP •••
••• TIME ST~~P •••
••• TIME STAMP •••
••• TIME STAMP .,.
, •• TIME STAMP •••

DATE-07/l0/711 TIME-12.00.0010011
DATE-07/10/711 TlME-l1,00,00.001i
DATE-07/10/711 TlHE-1Q.00.OO.004
DATE-07/10/711 TlME-15.00.00.0011
D~TE-07/10/711 TlKE-16.001001006

"'OPERATOR MESSAGE'" TIME - 111,22.03.782
9TA81 CAPSTAN DRIVE NOISY (JDR)

»> ~ODEL NO,7160 I/O ADDRESS,OOOIl «<
••• SIO FAILURE $"

---SIo-
TIME STAT CC
07.02.281922 21.112 6
15105.21,166 2AII26

~ •• DEVICE ERROR •••
---AIo-

---TDV- SUBC TDV CUR REM
STAT CC STAT C~~ DA BYTES
20112 6 00 001179 OOIiC
2042 6 00 001179 OOIiC

---'1'10- ---TDV- TDVCUR REM

Hl"I
00
00

TIME STAT CC STAT CC STAT OC COMH DA BYTES
15109,20.862 0048 6 18112 0 2042 2 001188 0000

»> HODEL NO.727' I/O ADDRESS.OOEO «<
••• DEVICE ERROR •••

---AIo- ---'1'10- ---'1'DV- TDVCUR REM
TIKE STAT CC STAT CC ST1.T CC COHM DA BYTES
12,56.21.278 01158 6 18112 0 011112 2 001lC7 001)0
15.42155:694 01158 6 18112 0 OU2 2 000A7!:: 0000
15142:551906 01158 6 1842 0 04"2 2 0001.7£ 0000

••• DEVICE ERROR SECONDARY
I/O

TIME ADRS ---------SEN5£ INPORMATION---------
12.56,21,2811 OOEO 00F90A02 0305F500 OOCAOOOO 00000000
15142,551700 OOEO 00£10500 0119FA02 80CAOOOO 00000000
15,42155.910 OOEO 00£70500 0119FAOE 03£20000 OOI)OO~OO

80 Error Log listing Processor

.;,.~?7: I/O
MPr', COUNT
on 01)01)1)009""

I/O
Hl"I COUNT
00 0000n89U8
00 0001)138012
00 000~1380l6

----------~--FlLE NAME-------------
R'l'RTEXT,V1 1 3
R'l'RTEXT,Vl11

----CUR COHM DW-- -RETRY- VOLUME SUBC
1 2 REO REM SERIAL STAT SEEX ADM

09008C70 2EI)OO078 03 03 00 00000008

----CUR COHM DW-- -RETRY- VOLUME SUBC
1 2 flEO REM SERIAL STAT SEEX ADRS

02031800 1E~I)~800 03 III 00 OllY90AOO
02075800 lEOO0570 08 08 00 OOE701i04
02075800 1£0"0570 OB 07 00 I)I)E70 II 011

SUhi The~SUM'co(Tin,and,r~uesh a s\:Jmmary of ·the
contentlof the error Ale which,lilh-tlJe tOta.l number, (in ,
dedmal) of qualified error 109 en'tri.1 for each .rr.or,lype.
The command hal the form . . . , .' " .

SU[M1

In addition to er~or total., th~ summary contains an tiC
activity count for each 'device thbt hal erron reconied i,.
10 ACTIVITY is the coUnt of oll$IOs inued to a given.
device for the time period covereid by the summary.

Exemple 5. Use of the SUM Comm~nd

lELLA8
·SUM@)

~!!Q.!

FROM
TO

07/10/74 ',' 00,00,00,000
12/31/99 23:59:59:999

SYSTEM ERRORS

TYPE
SYSTEM STARTUP
CONFIGURATION
SYSTEM 1.0.
TIME STAMP
FILE INCONSISTENCY

DEVICE ERRORS

10 SIO

ERRORS
1
6
1

16
2

UNEXP OEV DEV

Unlike other-iisfingsproouced by ELLA, logical devic~
addr:euesore used in the summary rather thonphy'it;Orod~­
dr.ejsses.Forexample, a device CRA03:would appec"r "OS
AQ39nd :ad~,~;ce QG~FO would ,oppear ai BFO.

On Iy~t.em$ with M9S m6f1lory, the summaryiricludes MOS
memory sit;'gle bi'! correctable errors (SBCEs).

E)COmpl~' 5 Provid~.'·on example of the SUM cam~and.

10
MOL ADRS FAIL INTRPT ERROR TIMEOUT ACTIVITY
7140 A03 0 0 13
7160 1.04 0 9 6
7322 A80 0 0 78
7323 A83 3 0 3
7323 A84 0 0 4
7323 A85 0 0 6
7271 AEO 0 0 3
7232 BFO 0 0 2

MOS CORRECTABLE ERRORS

BANK UNIT 0 UNIT 1
1\ 0 10
C 0 1

TOTAL ERRORS: 00144

DISP The DISP command requests a graphical display
of error log entries. The 0 IS P command has the form

DI[SP) [, interval]

where interval specifies the time interval, in minutes, to be
used for the graph. The interval specified may range from 1
to roo The default interval is ten minutes.

The graph produced by the DISP command is a bor graph.
Each line begins with the end time of the interval, followed
by the 2-digit error type code of each error recorded during

90 31 13B-2{9/78)

0
0
0
0
0
0
0
0

0000014798
00000()4906
0000227574
0000018295
0000021926
***** ••• *.
0000161268
0000248749

the interval. If the number of errors for a given interval
exceeds 30, then only the first 30 error type codes are
printed, and FF is printed at the end of the line.

o,ly qualified error log entries are included. Time Stomp,
Configuration, and 10 entries are always excluded.

The first and lost lines in the graph are the first and last
intervals within the TIME boundary that contains qualified
error log entries. The actual time period scanned is printed
at the beginning of the listing.

An example of a graphic display is given in Example 6.

Error Log Listing Processor 81

Example 6. Use of 0 ISP Command

The user in Example' 5· .confi".nues· as follow,S': .

G RAP II lCD' I ·SP LAY

FROl'-i OO/r)r)/OO
TO 12/31/99

TI1m ERROR

OO:Or):OO:r)I')I')
23:59:59:999

-----O-----~------------1~-----~------------20------------------10--
Ol:5fl 15
04:41 1A1A
05:26
OG:11
t')6:5fl
07:41 15161515161615111516
~8:26 1n11121S1S1'1515
09:'1 '5
09:56
1r):,.1
11:2fl
12: 1 1 2715

F.'llD OF FILE

The distribution of errors over the scanned time period is more readily apparent in this display than in the other forms
of error listings. This display is used to check for patterns and trends in error occurrences. The digits tha,t form this
bar graph are in pairs. (e.g., the line 1811121515111515 contains eight digit pairs). Each digit pair represents one
error and the two digits are the type code of the error. .

END The END command terminates EllA and exits to
the mon itor. The format of the command is

E[ND]

BOUNDARY COMMANDS

The boundary commands are used to select specified portions
of the error fi Ie for display. In order for an error record to
be accepted for display, it must satisfy each boundary.
There are four boundaries: -- .

• Time

o Model number

• Device address

• Error type code

An error log entry will be listed by a subsequent task com­
mand if it was recorded within the time limits specified by

82 Error log listing Processor

t~e TIME command and if it has one of the error type codes
specified by the TYPE command. If the entry is a peripheral
class entry (see Table 33), it must also have a model number
field and an address field which agrees with one of the model
numbers and one of the device addresses specified by the
MOD and DEV commands respectively. .

It is not necessary, however, to use any of the boundary
commands. If a boundary command is not used or a boundary
has been reset, all error log entries are considered to have
met the conditions of display for that boundary.

Boundary commands, if judiciously used, can be especially
helpful in minimizing ELLA output when the output listing
function has been assigned to a slow speed device such asan
on-line terminal.

RSET The RSET command resets all boundary parameters
to their default values. (The default values are given in the
subsequent boundary command descriptions.) The RSET com­
mand has the form

R[SET)

TIME The TIME command sets bol'h date and time If the TIME comi1ond is. not used (or if time and date are
reset by the RSET command) ELLA establ ishes thefo" lowi'19
beg inn ingand ending tim~s:

bounclari es. Error" log entries are di~plGryed, 'on'ly If they
occvrred betweentne begin date. and time and the;~nd date
and time. The TIME commantl has the fC?rm

TI[ME][, beg in] [-end] "
. begin = 00/00/00,. :00:09

where begin and en~ ha:,e the form
end == 1'2/31/99, one millisecQi'ld. before midnight.

(The time is recorded interncill y in millisecond
increments.) [month/day/yea~[i hour:m inute]

or

[hour:minute][, month/day/yea~

where

month = 1-12

day = 1-31

year = 01-99

hour = 00-23 (24 hour clock)

minute = 00-59

If only one grolJP (i .e~ ~ 'begin I or 'end') is entered under
the TIME command, the current state of the other group re­
mains in affect.

It is not necessary for both fields within a group to be
entered. If time is the only field entered in a group, then
the date for that groul? is the current day by default. Time
by default is a bit more complex. If the date field is the
only field entered for Ibegin', then 00:00 is the time by de­
fault. If the date field is the only field entered for lend'
then 1 millisecond before midnight is the time by default.

Examples of the TIME command are given in Example 7.

Example 7. TIME Command Usage

The following series demonstrates TIME command usage. Assume all of the TIME entries have been entered consecu­
tively at the console.

':TiME; 4/25/73-5/27/738

The time limits have been set by the entry above as follows: starting time is 00:00 on 4/25/73, and ending time in
one millisecond before midnight on 5/27/73. The only error log entries that will be displayed by subsequent task
commands are those that lie between these two time points.

':TIME, 2:00- 8:00 €9

The limits have now changed so that the starting time is 2:00 AM on the current day (i.e., the day on which the ELLA
run is being made), and ending time is 6:00 PM on the current day. (When no date is entered, the current date is
implied.)

':TIME, 18:00-10:00@

This entry is illegal and will produce a diagnostic message because the starting time is later than the ending time.
The limits 2:00 and 18:00 from the previous entry are still in effect.

*TIME 00:00 8

Here the starting time has been changed to 00:00 on the current day. Since no ending time has been entered, the
previous ending time of 18:00 remains ;n effect. .

':TIME,1/1/74-12:008

This sets the starting limit to 00:00 on 1 January 1974, and the ending limit to noon on the current day.

':TIME, -13:00 8

Error Log listing Processor 83

The previously entered,starting limits (1/1/74) remain in effect becouse no starting parameter is ente.ed here. The
e'1ding limit is changed to 13:00 for the c~rrent day.

*RSETe

ELLA time defaults are reestablished. The default is the entire time span qf the error Jog.

~TIME, 12:00, 10/15/73-10/16/73, 12:00 ~

Finally, the starting time is set to noon on 10/15/73 and the ending limit to noon on 10/16/73. Note that the order
of time and date entry is immaferial.

TYPE The TYPE command allows the user to select
error log entries for display by specifying an error record
type code (see Table 33). The TYPE command has the form

TY[PE], {O }
type 1[' .•• type5]

where

type is a hexadecimal error type code.

o specifies that the default (all types) is to be
reestablished.

. If error log entry types have been specified via the TYPE
command, error log entries are displayed only if they have
a type code equal to one of the types specified. Up to five
types may be specified for display at one time.

If the TYPE command is not used, records of art types are
d'isplayed (including any records that may have illegal type
codes). Displaying all types is the default condition. Hav­
ing once used the TYPE command, 'the default condition
may be reestablished by entering TYPE,O or by using the
RSET command.

Each time the TYPE command is used, the previoualy spe­
cified types are replaced with the newly entered types.

DEY' The DEV command selects error log entries for
display by specifying up to five I/O addresses. The DEV
command has the form

DE [VJ,{O }
address] [, ••• address

5
]

where

address is a 1 to 4-digit hexadecimal physical I/O
address. (Leading zeros in the address need not be
specified.)

o specifies that the default (alf devices) is to be
reestablished.

Up to five physical I/O addresses may be specified. Each
time the DEY command is used, the previously specified ad­
dresses are replaced with the newly entered addresses.

If this command is not used, records are displayed without
regard to their associated device address. This is the default

84 Error log Listing Processor

condition. Having once used the DEV command, the default
condition may be reestablished by ent~ring DEV,O or by
using the RSET command.

When particu1ar device addresses have been specified through
use of the DEV command, error log entries classified as sys­
tem records (see Table 33) are not displayed, and a peripheral
class entry is displciyed only if the device address field in
that entry is equal to one of the addresses specified by the
DEV command.

MOD The MOD command selects error log entries for
display by specifying up to five model numbers. When par­
ticular model numbers have been specified through use of
the MOD command, error log entries classified as system
records (see Table 33) are not displayed, and a peripheral
class entry is displayed only if the model number associated
with that record is equal to one of the model numbers spe­
cified by the MOD command. The MOD command has the
form

M[OD),{O" . }
model 1 [, ••• mode'5]

where

model is a 4-digit model number (e.g., 7446,7271).

o specifies that the default (all models) is to be
reestablished. .

Each time the MOD command is used, the previously spe­
cified model numbers are replaced with the newly entered
model numbers.

If this command is not used, records are displayed regardless
of their associated model number. This is the default con­
dition. Having once used the MOD command, the default
condition may be reestablished by entering MOD,O or by
using the RSET command.

Examples 8 through 12 demonstrate the use of the MOD,
DEV, and TYPE commands for selecting specific portions of
ERRFILE for display. The examples are consecutive portions
of one continuous on-line session. In these examples, the
user has chosen to display everything at the terminal. This
means that the user will be able to see the output immedi­
ately, but the user must make judicious use of this rather
slow output device.

Example 8. Use of the MOD, DEV, and TYPE. Commands

Assume that the vser frad_~lready requested and received a slJmmary of the error file (which would be a logical first
step). The user then:tu:oceeded to display the operator messages' present in the error fi Ie.

·TYPR,27@
·CLIS@)

C II RON 0 L.O G I.C ALL 1ST I N G
- - - - - ~ . '- - - - - --"

TYPE =27
FROr-t 00/00/00 00 :.00 : 00 • ') f') 0
TO 12/31/99 23:5'9:59:';99

••• OPERATOR ~mSSAGE ••• TIME = 12:33:00:079
9TA81 CAPTSTAN NOISY (JBR)

Note that th~ TYPE parameter is listed at the beginning of the display because TYPE is no longer set to the default.

Because only one type of error was requested, the terminal is a practical display device. If more than one type of
error is requested, a slightly different procedure can be used as shown in the next example.

Example 9. Use of the MOD, DEV, and TYPE Commands

The user from thb previous example next desired to examine some system failures. Note that the new TYPEs entered
in this example replace the old TYPE entered in the previous example.

When more than one type of error is-requested, a sorted listing often reduces the time required for output. This, is due
to the fact that ELLA only prints headings when a new type of entry is to be listed and SLlS groups all related entries
together •

• TYPE, 18, 1B@>
·SLISS

S 0 R TEn LIS TIN G

TYPE =18 1B
FROM 00/00/00
TO 12/31/99

00:00:00:000
23:59:59:999

••• SYSTEM STARTUP •••
START

TIME DATE TYPE
09:32:00:000 07/10/74 04
12:05:00:000 07/10/74 01
17:21:00:,)00 07/10/7 1• 05

···SYr.1BIONT INCONSISTENCY···

!{ECOV
COtnlT

01
01
02

OCT REL. SYHB.
TIME
11:29:08:406
16:01:13:648

INDEX SECT. DCT
09 OOAO 02
09 0110 02

SCREECH SUB-
CODE CODE

19 00
00 00
00 00

Error log Listing Processor 85

EXClmple 10. Use of the MOD, DEV, and TYPE Commands

The user proceeded os follows:

*TYPE~ 178
*DEV,lF08
*CLIS§

No output was produced bec~u~'e'rYPE~'i/~l'Id6r:v X'1FO' are mutually exclusive. Type 17 (Parity Error) is a system
class error while device X' 1FO' implies thatperipheral class errors ore desired. Entering either MOD or DEV values
precludes the display of any system errors (only peripheral class errors will have model or device address information,
and all four boundaries tests - MOD, DEV, TYPE, and TIME - must be passed for an error log entry to be displayed).

Example 11. Use of the MOD, DEV, and TYPE Commands

The user next decided to examine SIO fai lures on several devices.

*TYPE, 11@)
*DEV,4,81,82,838
*CLIS§

C H RON 0 LOG I CAL LIS TIN G

TYPE =11
DEV =0004 0081 0082 0083
FROM 00/00/00 60:00:00:000
TO 12/31/99 23:59:59:999

*** SIO FAILURE t**
I/O ---510-

TH1E MDL ADRS STAT CC
12:36:30:782 7323 0083 2000 6
12:37:29:518 7323 0083 2000 6
12:4r):10:398 7323 0083 2000 6
**13REAI<
*

---TDV-
STAT CC
1000 6
1000 6
1000 6

SUBC TDV CUR REH
STAT Cm·'lr1 DA BYTES '1FI
00 0r)11137 00f)1 00
Of) Or)11B7 0001 f)f)
f)O 001'137 001')1 Of)

After examining several of the failures on device X'0083', the user realized that no new information would be gained
by listing the remaining errors. Therefore, the user interrupted the listing process by activating the BREAK key at the
terminal.

86 Error log listing Processor

E:xample 12. Use or the .. MOQ, DEV, and TYPE ('..ommands

Finally, the ~ser summarj'z~'d, in graphic form, all Model 7322and 7323 failures that:occurred onthe current day •

• nEV, 0,8
.TYPE,08
·HOD,7322,.73238
·TIME, flO i 1)1)9
·OISPE! .

t;RAPIlIC DISPLAY

nODL =7322 7323
FROM 02/09/74 OO:~O:OO~OOO
TO 12/31/99 23:59:59.999

TIt-m ERROR
-----0------------------10------------------20------------------3~--
09: 11 11
1)9:21
09: 31
09: 41
09:51
10:1)1
11):11
10:21
11):31
10:41
1t):51
11:1)1
11:11
11:21
11:31
11:41 1516151516161115151616
11:51 1315161516
12:1)1
12:11
12:21
12:31 1516

END OF FILE

DSPL The DSPL command displays the current state of
those ELLA parameters that are alterable by the boundary
commands. The date and time boundaries are always listed
by this command. Each of the remaining boundaries will
also be listed unless its current state is its default state.

output is only directed to the output listing device since
the input device is the card reader.

The DSPl output is printed both on the output listing device
and the command input device. In botch operation, DSPl

90 31 138-2(9118)

The format of the command is

DS[Pl]

An example of the command is given in Example 13.

Error Log listing Processor 87 I

Exa~~p!e 13; Parameter Df-5play

. ,.~i'.:

'. The' ~-I ine U}6f may check the current stat,e of'the ELLA boundari~~< i;nvenienfly ~Hh the DSPl command. If the
I,is.tr~g·d~vr~e has been assignp.dta a lineprinter, the boundary inf~;'5'tion ~ill be displayed on both the line printer
and ,the user's:t,erminal. ..t,' ,

:. ,', ',.'.

:RSET8
~SET, LIST t LP e
:DSPL9
FROM 00/00/00

TO 12/31/99

'~TYPE • 11 t 12 , 15 8
:DEV,E18

~DSPL8
TY PE = 11 12 15

DEV=OOEI ----

00:00:00:000

23:59:59:999

F_R_O_M.:c--_O_O:....IO_O-,-I_O_O __ O_O_:_O_O : 00 : 000

TO 12/31/99 23:59:59:999

MOS On MOS memory systems the MOS command
prints a graphic display of all MOS-memory reported
single-bit correctable errors (SBCEs). These errors ore
logged as MFI (30) and Memory Parity Secondary (43)
errors, and are summarized in a special fashion with the
MOS command. \ . ,

i
The format of the command is

{
All }

MOS, unit/bank

where

All implies that SBCEs for All BANKS are
to be reported.

Example 13.1. MOS Summary Display

*MOS,ALL

FROM
TO

00/00/00
12/31/99

00:00:00:000
23:59:59:999

unit/bank implies that SBtEs for the selected
unit/bonk are to be reported, where

unit :: 0 or 1
bank A,B,C or D •

The MOS single-bit thresholding and reporting is'under
CONTROL control.

An example of the MOS command Is given In
Example 13.1.

UNIT 1
BANK A
SLOT
CHIP- 1

<-----*-----*-----*-----*-----*-----*-----*----->

88

A

- 31
-51
-71

o
o
o
o

B
3
o
o
o

c
o
o
o
o

D
o
o
o
o

F
o
2
o
4

G

o
o
o
o

H
o
o
o
o

J
o
o
1
o

UNIT 1
BANK C
SLOT
CHIP-51

<-----*-----*-----*-----*-----*-----*-:---*----->
A B c D F G H J

o o o o 1 o o o

Error log listing Processor 90 31 13B-2(9/78)

PRUlEFINED. TASKS

This section contains a set of predefined tasks that shoutd
be useful to the' person~ who needs periodic en:of log r~pofls.,
but has no need for a ":lore precise knowledge Q,f tneELLA

Example 14. listing the Entire Error File

proce!.sor'!> command stru:Cture. These tasb could be main­
. tained as job decks (as ill~ ... t,roted here), or th~:c6!"l1monds
.mlght' be e~tered into a fife to fOcHit.ot~·on-lir'l~ s'cJbm'issio;',
to the batth stream (-see the TEL BATCti ;;;o~rn'aAd in the
cp-v/TS Reference Manual, 90,Q9.Q7): 'T~e dtcount from

which these jobs are run must ha've'-a diagn9stic pri vi lege
level (AO or higher) •. The task$. ore.lhted in Examples 14
through 16.

The following deck obtains an error summary and a chronological listing of the entire contents of the error file.

IJ08 account, name, priority

90 31 138-2(9/78) Error log listing Processor 88.1 I

(This pogo intentionally left blank.)

88.2 Error log li sti ng Processor 90 31 0138-2(9,/78)

Example 15. Listing Errors for th~'Current pay

The following iob de~k',obta;n5 an e~ror summary, a chronological listing, and a sorted listing of the errors. recorded
by the'system on thecurr'e,Ot:.d~y." If error log reports areto'be-obta~rled daily,it;isrecommended that this job be run
at the end of, the processing"d(jY. " " .

• (. ~ ~ -: "'t. .. , ,

!JOB account, name, priority

Example 16. listing Start-Ups, Configuration, and Device Partitioning Activity

The following job deck obtains all the configuration data together with system start-up, partitioned resource, and
returned resource entries in chron~logical order.

TYPE, 18,21,22 51 52

!EllA

!JOB account, name, priority

Error log listing Processor 89

ELLA MESSAGES

Messages Ol-:,tput by the ELLA processor are listed in
Table 36. '

,EU,~tOMMAND SUMMARY

ELLA comma'nds ore s~rnn1arized)n Table 37. The left-hand
side lists the command formats'. ' The right-hand side de­
scribes the funct:o~ 'of the command.

Tobie 36. ELLA Messages

"

Message Meaning
"

ABNORMAL ERROR CODE = xx An abnormal condition was detected in issuing a system CAL
SUBCODE = xx The abnormal code and subcodeare describ'ed in the CP-V/BP

Reference Manual, 90 17 64, (and the CP-V/TS Reference
Manual, 90 09 07). See the system analyst.

BREAK The BREAK key was depressed. ELLA stops processing and waits
for a new command.

ELLA 708006-AOO This heading is output when ELLA is first loaded.
v

ERRFILE IS BUSY, WILL TRY AGAIN ELLA tried to access the error log fi Ie and found it busy.

**ERRLOG NON-EXISTENT The ERRFILE file does not exist. See the system analyst.

ERROR IN KEY FORMAT An ERRFILE entry had an erroneous key. See the system analyst.
(YEAR/DATE NOT IN PACK DECIMAL)

ERROR IN SYSTEM TIME The time in the error log fife was not logical. See the syste'm'
, .

, i

anafyst.

ERROR OCCURRED: CODE = xx An error was detected"'fn 'issuing a system CAL. The error code
SUBCODE = xx and subcode are described in the CP-V/BP Reference Manual,

90 1764, (and the CP-V/TS Reference Manual, 90 0907). See
the system analyst.

ERROR: TIME.GT. The time in an error log entry was greater than 99 hours, 59
99:59:59:999 minutes, 59:.seconds, or 999 milliseconds. See the system anaf yst.

ERROR: TOO MANY CHARACTERS OR ELLA tried to output more than 132 characters to the line printer.
LINES . ' . See the system analyst.

INSUFFICIENT PRIVILEGE LEVEL ABORT ELLA requires an AO or higher privilege level.

INVALID REQUEST The command entered was invalid.

NON-REASSIGNABLE Once the operator's console is assigned as the control device, it
cannot be reassigned.

NOTHING IN ERRFILE ERRFILE does not contain any records.

**OVERFLOW OF SORT OR MOD/IO ELLA will only support 50 unique I/O addresses. Use the
TABLES boundary commands to restrict the number of I/O addresses.

UNABLE TO LOAD SEGMENT = nn ELLA tried to load overJay number nn and an error was detected.
See the system analyst.

90 Error log Listing Processor

Table 37 •. ELLA Command Summary
~ -

Format Description
~

, e[lIS] Requests a'chronological listing of the error entries in fh::: order
,'in wf1ich. they a~pear in ER~FILE.

DE[V] {O . .'. } Selects error log entries for display by specifying up to five
, addre,ss ~ [, ••• , address 5]

physical device I/O addresses or (if 0 is specified) specifies that
error log entries for' all devices are to be displayed.

, ..
'.

DI[SP] [, interval] , Requests a graphical display of error log entries.

DS[PL] ~isplays the current state of the four types of boundaries.

E[NO] Terminates ELLA and exits to the monitor.

M[OD],{O]} Selects error log entries for display by specifying up to five model
mode' 1[' • • .,model 5 numbers or (if 0 is specified) specifies that error log entries for all

models are to be displayed.

R[SET] Resets all boundary parameters to their default values.

SET, LIST, {~~} Reassigns the listing and message output device assignment during
execution of ELLA. lP specifies line printer. KP specifies oper-
ator's console for the ghost and batch modes and on-line terminal
for the on-line mode.

SlOS] Requests a sorted listing of the error log entries.

.' SU[M] Requests a summary of the contents of the error file, which lists
the totaJ number (in decimal) of error log entries for each error
type.

TI[ME][, beg in][-end] Sets both the date and time boundaries where begin and end have
the form

, -

[month/day/year][, hour:minuteJ

or

[hour:m inute] G month/day/year J

TY[PE], {O } Selects error log entries for display through the specification of
. type l [,··· type5l error record type codes (see Table 33) or (if 0 is specified)

specifies that all types are to be displayed.

HARDWARE-ERROR DIAGNOSTIC CAlS . These three services are all invoked by a CAll, 6 fpt in­
struction; the addressed FPT contains a code and a parameter.
The FPT codes and the functions performed are as follows:

The following three CAls are intended for use by the monitor
in performing diagnostic functions relating to the hardware­
error log and must be issued by a program from the :SYS
account. They provide the following services: reading from
the hardware-error log, writing to the hardware-error log,
and initiation of diagnostic ghost jobs.

FPT Code

o
1
6

Function

Read Error log
Write Error log
Initiate Ghost Job

Hardware-Error Diagnostic CAts 91

The status of the requested operation is reported via
condition':'code settings summafizedhelow. (Not all of the
status, indicated are appropria,te, to,or reported by, all
three CALs.)

eel CC2 CC3 eC4 Status

0 0 0 0 Norma I return.

·1 0 0 0 Requesf den i ed: insufficien~ privi- "
lege, not in :SY$ account; or quffet
is not a'data page.

0 0 0 Error during operation (Read or
Write), or job unknown (Initiate).

0 0 0 last buffer.

0 0 0 Error log does not yet exist (Read).

In each case, the calling program must be of privilege level
eo or greater; otherwise CC 1 is set to 1 and no action is
taken.

: READ Eft'ROR LOG

The format of the FPT for a read-error-Iog request is

A variable number of words up to a maximum of 256, de­
pending upon the contents of the error log, is read to the
area addressed by the FPT. This is a 'destructive' read,
returning error-log granules to the monitor's available pool
as they are exhausted.

The error-log file is not protected against simultaneous use;
thus only one program in the entire system should read this
fj Ie.

92 Hardware-Error Diagnostic CAts

wmTE ERROR lOG

~hefotmat of the FPT for a write";',error-iog request is

.Th~ second byte ofJhe da,ta record addressed by the FPT
must specify the (lumber of words to be written, up to a
maximum of 253.' The first byte of the record should con­
tain a type code.

INITIATE GHOST JOB

The format of the three-word FPT' for an initiate-job request
is

word 0

words 1 and 2 (Name of job ,to be initiated)

n a
1

a
2 °3

-

a
n-3 a n-2, a

n-1
a

n
0 I 2 314 5 6 7 8 9 10 11fl2 13 '4 15 16 17 18 19T20 21 22 23 24 25 26 27128 29 JO 31'

(Name of job must be in TEX TC format.)

If the program to be initiated is already in execution at the
time of the request and is not in a waiting state (WAIT CAL
with unexpired time), the normal return is made (CCI =0).
If the program is in a waiting state, it will be activated
immediately at the WAIT CAL plus 1 and a normal return is
made to the initiating program.

; 7. St~ARED PROCESSOR FACILITIES

INTRODUCTION'
. ,

This chapter describes the shared processor facilities of
CP-V. These facilities permit the sharing of' the code for
compilers, assemblers, command language processors, de­
buggers, I ibraries, and other programs among all simulta­
neous users.

Shared processors are not limited tdprograms provided
, by Xerox. The facilities may be effectively used when­
ever a program has a high probabil ity of co'mmon usage.
Service bureaus, for example, may use the mechanism for
proprietary packages. Corporate installations may use the
mecha~ism for programs with a high use frequency.

Most programs may be establ ished as shared processors by
naming them at SYSGE N time. This ccruses the file copy
of the program ,from the :SYS account to be written on the
swapping disk dudng system initialization. The program is
then available through h,igh-speed swapping I/O.

The file copy of the program is retained for recovery pur­
poses and may be copied to another account and run as an
unshared program under Delta for development and debug- '
ging purposes. If the toad modu,le in the :SYS account is
replaced, the shared copy of the program on the swapping
disk is updated to the newer version in the event of a sys­
jein recovery.

To qualify as a shared processor, a program must meet cer­
tain requirements. These requirements are outl ined in the
remainder of this chapter. The most stringent requirement
relates to the single overlay level that is described in the

, section below titled "Overlay Restrictions".

To avoid confusion, the use of processor names which re­
semble monitor mnemonics is discouraged. However, if such
names are used, the following rules must be followed:

1. If the first three characters of the processor name are
JOB, BIN, BCD, EOD, or FIN, then usage of that pro­
cessor in the batch mode requ ires that at least one blank
appear between the I and the processor name on the
control command which calls the prOCessor.

2. The names of monitor control commands (listed in the
CP-V/BP Reference Manual, 90 1764) are reserved words
and must not be used as processor names.

PUBLIC PROGRAMS

A program whose load module is in the :SYS account but is
not shared is a publ ic program in the sense that it may be
called either by a control card containing the I symbol and
the program name, or by an entry of the program name in
response to a TEL prompt (I) for commands. Each user of a
public program has his own copy of the program.

PROCESSOR PRIVILEGES

Processors in the:£SYS ,accb~nt and shared processes mqy be
granted special' privileg~s which are independent of the
us~r's privilege level and are in effect only when the pro­
cessor, is executing. For shared processors, privileges are
t~Hied ~n the :SPROCS cQmmand at SYSGEN or on the
DRSP 'command which enters: the processor. Privileges for
unshared processors are specified when the load module is
loaded, using the PRIV keYYKJrd. The privilege flags be­
come part of the load module and are invoked when the
load module is executed. Load module privileges will not
be granted by the monitor unless the load module resides in
the :SYS account when it is executed.

The following privileges are implemented:

1. Master mode permission - can execute M:SYS or
M:MASTER CALs.

2. Maximum memory protection - can exceed user's
memory limit to a maximum of 92K words.

3. Special JIT access - allowed write access for JIT page.

4. Processor accounting-causes CPU time to be subtotaled
separately from user execution and service time. It
will be subtotaled as processor execution and service
time. (This is always done for shared proces~ors.)

SHARED PROGRAMS

Shared programs are called in the same manner as public
programs. However, each user of a shared program has his
own copy of only the data and DCB portion of that program;
the procedure portion is shared by all users associated with
the shared program.

There are four distinct kinds of shared programs:

1. Ordinary shared processors.

2. Special shared processors.

3. Shared debuggers.

4. Pub'ic libraries.

All shared processors must be built by the batch loader.
Ordinary shared processors occupy the same virtual memory ,
as user programs and may not be associated with them.

Special shared processors, shared debuggers and publ ic I i­
braries occupy (and are overlayed in) the special processor
area. Figure 11 shows the virtual memory allocation for
shared programs that are biased within the special processor
area. Shared debuggers may be associated only with user
programs; they may not be assoc iated with any other shared
processors. Public I ibraries may be assoc iated with user

Shared Processor Faci'ities 93

I'-------.-------'------q-------.---.--~--.-'-----.'--.-------

OK 32K .. 40K 112K 128K

~:l--------.....,.---~+--
, . Available aiea t

N.ofiit&[. Cor~fex{-
Special processor area

area area
(User program or dynamic data)

Data DCBs
Procedure

(if any) (if any) ______ .'-'-___ ..-.-L-------- -------,--

Figure 11. Special Processors - Virtual ME;nlOry

programs or ordinary shc:red processors; a public library rWly
not be associated '.vith a special shai~d processor. Note
that beth a shared debugfler and a core I ibrary may be con­
currently associated wi~h 0 user program. This is po!.sible
because the procedure portion of the debuggei ond the
library may be overJayed in the special procesror area.

lOG-ON COMPUCTION

Commonly used programs, such as BASIC, may be coiled
automatically by LOGON. The name of the program to be
called, which maybe either a shared or public program from
any accessible accourit, is establ ished in the user's author­
ization record by Super. LOGON calls the named program
for the user following a successful log-on. >

SHARED PROCESSOR PROGR.4MMING

The programming of shared processors may require certain
, information about the CP-V monitor. This information is
outlined below.

2A

2B

4F

FIXfD MuNITOR LOCATIOr~S

For certain purposes, such as the choice of an effectiVE:; core
allocation technique, it is desirable for processors and 0iher
programs to be able to idenf-ify the mon itor in operation,
certain critical locations of the monitor, and the location
of job information tob!e (JIT). This is accompl ished by
having locations 2A, 28, and 4F common to all Xerox m')n­
itors. Figure 12 illustrates the contents of these locaticn:;.

Location 2A contains a flag that differentiates between an
initial boot (nonzero) and a recovery boot (zero).

location 2B conto ins three items:

1. Monitor - This fi'9ld contains the code number of the
monitor. The codes are as follows:

Code Mon itor

o None or indeterminate
1 BCM
2 RBM
3 RBI-A-2
4 BPM
5 BTM/BPM
6 UTS'
7 CP-V
8 CP-R
9-F Reserved for future use

Figure 12. locations Common to All Monitors

94 Shared Processor Programming

2.

3.

Version - This is the version code of the mort'ito; endJs
coded !'o corre>$pond to tho common des igTi~tion fOr
versIons. The alphabetic count of thevers·ic.n desi9~
notion Is the high':'order port of the codeand ih~version
number is the low-order part. For exampf., AOO is
coded X'lO' andD02 Is coded X'42'. . .,'_, '

Parameters - The btts in this field are used to' }~'dicate
suboptions of the monitor. They o~~meaningful only
In reJc:tion to a particulormonitor."However, the fol­
lowing assignments hove been made for BPM, 8TM,
and CP-V.

31 set

30 s~t

29 s~t

28 set

27 set

26 set \

22 reset; 23 set; 24,
25 reset, i

22, 23, 24 reset;
25 set

22, 23 reset; 24 set;
25 reset

22, 23 reset; 24 I
25 set

18 set

17 set

16 set

Meaning

Symbiont routines included.

Remote processing routines
includ1td.

Real-time routines included.

Unused.

Reserved for Data Manq)6-

ment System.

Res~rved.

Computer is Sigma 5.

Computer is Sigma 6 or 7.

Computer is Sigma 9.

Computer is Xerox 560.

Multiprocessing capability
present.

Transaction processing rou­
tines included.

On-line system.

location 4F contains the virtual JIT addreS! right-iustified.

JOB INfORMATION TABU (Jln

For each active lob, the system maintains an in-core record
(job information table) that allows the job to be scheduled
and swapped. This job information table (JIT) is the first
page of each Job, both in core and on the swapping disk,
and contains accounting information, memory map, swap
storag~, addresses, and other information for the job that
may be of use to a processor. t In order to reference these

• 'With res~ct to accounting, only shared processors or load
modules with the "processor accounting" privilege are pro­
cessors, i. e., time spent compil ing 0 COBOL program is
accounted under "user tim~1I while time spent in FORTRAN,
PC l, etc. I is considered "proceu..or time" •

9031 13B-2(9/i8)

vafuss, the processor 1hould REF the req'~ired syrr.bol and
the,n specify thot :JO" the JIT dcfin ition pac::ko.ge/bel~bdad
along with the processor . The entire JfT; is 'Clvpjtob,lg Oil a
read-only bas ,is to' allprogr,oms. j.n~'ludin9pr?c..es$O~$. Con­
tents that are particuld~ry usefultoproc::~sory ,ore given in
Tobie 38. The complet~ contents arP. describ~ in the CP-V
Data Base Technical, Manucil,90 1.995'.'

Table 38. Portial Contents of JIT

location Size Contents 1
~----+----~~------------~

J:JIT

(bit 0)

(bit 1)

(bit 2)

(bit 3)

(bit 4)

(bits
16-31)

JB:lPP

JB:lC

J:OPT

J:CCBUF

JB:CCARS

J:USER

M:UC

1 bit

1 bit

1 bit

1 bit

1 bit

Set if the job is on-I ina and
reset if the job is batch.

Set if tho job is a ghost job.
For example, the meaning of
bits 0 end 1 is as follows:

00 batch job

01 ghost iob

10 on-line

Set if user is a non-COC
on-I ine user. (Bit 0 also
set.)

Reserved.

User is executing from a
commQ!'\d file.

halfword Job identification number
that is guaranteed to be uni­
que to each currently exe­
cuting fob.

byte Number of printable lines
per page (COC).

byte

word

20 words

byte

2 words

Current print I ine number
(COe).

Option flClgs set by TEL and
affected, by the 'DONT'
modifier.

Imoae of the command line
received by TEl.

Length of command J ine
received by TEl.

On doubJeword boundary for
any use by installation.

I

22 words Console I/O DeB (system J
DeB).

Shared Processor Programming 95

, MEMORY SfZE RESTRiCTIONS

Be-couse of certain CP-V Swoppercharacteri:5tics, the'
physical size of shored processors is restricted t,974 pages.
That is the maximum size of the proce~r root and its
longest overlay, and the proced'ure size of any associated
shored libro.ry. '

MEMORY CONTROL'

No special memory restrictions appl}t" to programs operating
os shared processors. In CP-V, 0$ in any other time-shared
or multiprogrammed system, prudent use of memory can sub­
stantial Iy improve system throughput. Requests (or all avail­
able memory should be avoided. A request for enough
memory to cover typical processing should be mode initially,
then a request for additional memory shQuld be mode during
process ing if the need arises. Memory should be returned to
the system at major changes of control, but the frequent
acquisition and release of memory will increase system over­
head out of proportion to the gain.

OVERLAY RESTRICTIONS

Any processor intended for shared use may be created and.
debugged as on ordinary program. It may be coded in as­
sembly language and debugged under Delta or created in
FORTRAN and debugged with FDP. To qualify for inclu­
sion as 0 shored processor, It must be coded within the
following restrictions:

1. Shored processors are allowed only one level of over­
lay. There is no restrictIon on the number of overlays
but only one of them can be associated at a time.

2. Data cannot be inciuded in overlays; it must be in the
processor root.

3. Overlay names are restricted to seven characters or
len.

4. All ports of an overlay disappear from core when an­
other overlay is called. (Portions of a 'previously used
overlay are not avai lable when a shorter overlay is
invoked.)

5. Shared processors written in FORTRAN must be pre­
c&ded by some Meta-Symbol code that associates the
library and links to the FORTRAN code.

6. The root must be greater than one page in length.

When on overlayed shared processor is requested, the pro-­
cessor root and its first overlay are looded. Assembled data
and DCBs are loaded' when the root is loaded. Whenever
overlays are not required, memory usage can be held down
by declaring an overlay length of zero and issuing a CAL to
associate that overlay.

Oveda)'S are declared and associated in the same way as
they are for batch programs (CP-V/BP Reference Manual,
90 17 64). TREE command cards and M:SEGLD remain the
same. (SECT 2 and 3 are conveited to CSECT 1 by CP-V
loaders .

96 Shored Processor Programming

Shared debuggers{Delta is th~'ohIY· current example) must
have only one page of context an~ no overlays. They re­
side in the special virtual area of high memory that is cur­
rently fixed in vIrtual (not physical) size in the highest
16K of virtual storage. They may be any physical size less
than 16K including theIr context page.

.' DATA CONTROL BLOCKS
~.: ~1~1~:~;'~"' ~ ~I .~

.vest processot;!/O operations are performed through stan-
dard monitor DQ:8s. For example, source input is norm­
ally read by""

M:READ M:SI(options]

The standard DeBs are

M:81
M:CI
M:EI

. M:SI

M:C
M:BO

M:CO
M:DO

M:EO

M:lO
M:SO

M:PO

M:AL

M:lL
M:OC

M:SL
M:GO

The default assignment of monitor DCBs is the operational
label of the same name (M:OO is assigned to DO, etc.).
The default assignment of operational labels to devices is
shown in Appendix A. These assignments may be changed
at S'YSGEN. The default assignments for batch operations
differ from those of on-line operations. This;s done so that
a program that writes through LO and reads through SI will
automoticall y use the I ine printer and cord reader for botch
operations and the terminal for on-line operations. The
logical functions associated with the operational labels are
described in the CP-V/BP Reference Nonual, 90 1764.

Details concerning input buffers, error handling, and so on
are sp6cified as parameters in a read or write call. Param­
eters associated with files and devices are specified by the
ASSIGN (botch) or SET (on-I ine) control command.

90 31 138-2(9/78)

A processor may const.r:uc;t its own DC Bs by means of the
M:DCB procedure.' Howevet.,,' processors are not required
to construct DeBs. DC~ Aot. constructed by a processor
will be q>nstructed by the .tooder. Standard DeBs con­
structecr by the loader occupy 51 words and are connected
to a device either by the loOder or by an on-I ine user by
means of special terminal commands. The M:DCB procedure
must be used if optional parameters such as read or write
accounts exceed the'allocation of the standard DCBs
(Table 39).

DeBs are also provided in library form' atid n)dt be explicitly
called during a load. The sizes of theSe mc&are shown in
Table 39. '

Processors may use nonstandared DCBs, if necessary. Non­
standard DCBs are constructed by the loader if not con­
structed by the processor. They must be explicitly connected
to a device either by an M:OPEN call in the processor or
by a SET command issued by an on-I ine user since no default,
assignment via operational labels is provided.

It is common practice for a processor to obtain source input
through M:SI, to print a source I isting through M:LO, and
to print diagnostic output through M:DO. However, pro­
cessor I/O operations are complicated by the fact that an
on-I ine user can connect 51, LO, and DO either to different
devices or to the same device (the on-line default assign­
ment for 51, LO, and pO is the terf'!linal). In particular, a
user may connect two\or more of these standard operational

leibels to the same device. For th is reason, processors must
take precautions to .avoid duplications in pdnhJd output. '
This means f"hat processorsmus.r know, at' all times whether
,they were called in batch or in on-line mode and what
speciflc"device connections have been mooe for standard
DeBs.

Processors may excmine DCBs directJy to determine when
the DCBs are connected to the same device. Fields within
a DCB may he referenced relative to the name of the DCB.
Fields that may ~e~<Useful to processors are as follows:

FeD

TYPE

Bit 10 of word 0 of a DCB. This is the file­
closed flag. A 1 means the associated file
is open; a 0 means the file is closed.

Bits 1'8-23 of word 1 of a DCB. These bits
specify a code for the type of device con­
nected to the DCB (printer, terminal, card
reader, etc.).

DEV Bits 24-31 of word 1 of a DCB. These bits
specify an indexto the monitor device tabre.

Under CP-V, all device assignments are direct. This means
that DEV always contains a direct device assignment. A
complete layout and description of DCBs is contained in the
CP-V/BP Reference Manual, 90 1764.

Table 39. Standard DCBs

Pass- Expiration Read Write Execute Execute Synonymous Key Total
Nome Device Nome Account word Dote Accounts Accounts Accounts Vehicle INSNS OUTSNS Nome Buffer Words

Loader 22 4 3 3 3 0 0- 4 4 0 8 51
Built
DeBs

M:C 22 22

M:OC 22 22

M:BI 22 9 3 3 3 4 8 52

M:CI 22 9 3 3 3 4 8 52 ,

M:SI 22 9 3 3 3 4 8 52

M:EI 22 9 3 3 3 17 17 17 4 4 9 8 116

M:BO 22 9 3 3 3 17 17 4 8 86

M:CO 22 9 3 3 3 17 17 4 8 86 -,
M:SO 22 9 3 3 3 17 17 4 8 86

M:PO 22 9 3 3 3 4 8 52

M:LO 22 9 3 3 3 4 8 52

M:LL 22 9 3 3 3 4 8 52

M:DO 22 9 3 3 3 4 8 52

M:GO 22 9 3 3 3 8 48

M:EO 22 9 3 3 3 17 17 17 4 4 9 8 116

M:SL 22 4 3 3 3 8 -43

M:AL 22 4 3 3 3 8 -43

Shared Processor Programming 97

Thi': some effect can be obtained by the eORRES' device
CAL" b.ut the CAL is much slower:, than the direct compar­
ison. The direct comparison qf the combined TYPE-DEV
fields is meaningful only if the DC~has been opened. This
means that procsssorsmlJst explicitly open DeBs for which
device assignments will be tested. ' .

FilE IDENTifiCATION I

All on-I ine processors use a> common form'at cind'~o~mon
character set for constructing fife identifiers (ficl). The
standard format is

[

0 account]
name 0 account. password

•• password

where name, account, and password consist of character
strings with maximum lengths of 11, 8, and 8, respectively
(name has a maximum of 13 characters for eCl, Edit, and
PCl and a maximum of 10 characters for link and load).
Any of the following characters may be used:

. A-z a-z 0-9 LJ $ * % # @ -

lowercase alphabetical ch~racters are n;t available on al I
terminals (e. g., Teletype Models 33 and 35). If lowercase
letters are sent to these terminals, they are printed in upper
case.

Account and password are optional. If account is omitted,
the log-on account is the default account. If password is
omitted, no password is required to access the file.

TEL SCAN

A processor call entered through a terminal via TEL has the
form

1m fsp) [g~ER [rom)[,list)]

where

1m is the name of the processor and is a fi lei denti-
fication (fid). Account :SYS is assumed.

sp specifies a source program and may be either a
file identification (fid) or a terminal identifica­
tion (ME).

ON indicates that ROM output is to be on a new
file.

OVER indicates that ROM output is to be over an
existing fi Ie.

98 Shared Processor Programming

rom ,specifies that the relocatable object modul e
produced by the processor is to be directed to a
specified file (fid). If n~file is specified, out­
put is directed to a special file that may be sub­
sequently referenced by a dollar sig~.

list specifies that a file (fid), a Hne printer (lP),
or the terminal (ME) shou'ld be used for listing.
If list is not specified, no listing output is
produced. .

I These specificdtibns are jmp~it ASSIGN and SET commands
for the DCBs M:SI, M:GO, and M:lO. A processor call
causes the specified processor to be executed with M:SI DCB
input from the file sp. Processor output through M:GO DeB
is placed in the file specified by "rom" and listing output
(M:lO DeB) is directed to the file or device specified
by "list". Processor calls are interpreted by TEL.

Parts of a processor call may be enclosed in parentheses.
TEL does not do anything to these parts of a proceSsor call.
However, the processor may examine these and other parts
of the command line that is in its JIT buffer (J:CCBUF).

Processors may reside in storage in three forms:

1. System swap storage contains absolute shared copies
of frequently-used processors. These copies can
be located and loaded quickly. The absolute shared
processor file is created during system initialization and,
contains reentrant processors that are shared among
all concurrent users.

2. The :SYS account may also contain copies of processors
in load module form. Processors in this form cannot be
loaded as quickly as absolute processors, but the :S YS
account may be useful during processor construction,
debugging, and extension. Publ ic programs in the
:SYS account may be called by entering their names in
TEL commands or on control cards.

3. A user may store his own processors or his copies of
system processors in his own files {account}. A pro­
cessor stored in a user's fi Ie area is identified by its
file name and may be called by the RUN command
in batch or START command in on-line operations.

When TEL encounters a processor call, it issues an exit CAL
specifying the requested processor. The monitor routine
STEP checks to see if this user has any processor restrictions.
If the user is not restricted from using the requested pro­
cessor, STEP checks fo see if the processor is a shared pro­
cessor. If it is shared, STEP checks to see if the processor
is in core. If it isn't in core, STEP loads it into core. If
the processor is not shared, STEP searches the :SYS account
and loads the processor from there. If the processor cannot
be found, an error message is sent to the terminal. Before
control passes to the processor, TEL checks the parameters of
the processor call for correct syntax and for existence of the
"sp" file and a urom " or "list".

TEL sets end resets bitsinJIT to correspond to the commands
LIST, DONT LIST, etc., 'and to the inHial occur~enceof
assignments in the com~~nd string. One JIT word (J:OPT)
contains a bit for each option that can be specified for a
processor. The options and their corresponding bit assign-
ments are as follows:. '

Identifier Bif ' Set Reset

LO 31 UST DONT LIST

GO 24 OUTP~T ,'DQ~T OUTPUT
~.

DO 23 COMMENT Cl,ONT COMMENT

15 DEBUG DONT DEBUG

0 ECHO DONT ECHO

The underlined values are default values. The default
setting for J:OPT is STDOPT in the monitor root {module
UTERALS}. This cell may be patched by the installation to
generate different defaults than are indicated in the pre­
ceding table. ,If a SET command is issued for the M:lO,
M:GO, or M:DO DCB, or the fist output or binary output
fields are specified in a TEL command, the corresponding
bits are set. Each processor must ass ign mean ing to the bits
in J:OPT and interpret them. UnaSsigned bits are available
for future use. Checks of these bits-should be made on each
write command since TEL allows on-line users to interrupt
the processor and tum on or off the lO, GO, and DO
d~vices.

Each processor should establish conventions to maintain
orderly output when two or more DCBs are connected to the
some device. The usual convention is that if diagnostic
output has been written via M:lO, and M:lO and M:DO
are connected to the same device, then the diagnostic out­
put should not be written via M:DO. The following ex­
ample illustrates some of the special cases that processors
should consider:

1. M:Sl, M:DO, M:lO connected to the same device'
(the input line should not appear three times).

2. M:DO connected to a device that is different from SI
and LO (the diagnostic comment should probably be
printed beneath the line in error). - .

3. M:SI and M:DO connected to a Teletype (processors
mayor may not want to type a line in error).

,Processors may read each input image via the M:SI DCB.
The last record of the sp will cause an end-of-data abnor­
mal condition (see the CP-V/BPReference Manual, 90 1704
for a description of abnormal conditions). To obtain con­
trol of an error or abnormal condition, a processor must
issue the M:SETDCB command and/or include error and ab­
normal exits in its read and write CAls. Since source input
may come from a Teletype (sp = ME), processors must be
able to handle Teletype input. The problems associated
with Teletype I/O are discussed in the section on terminal
vO.

CCISCAN

On transferring control to a 'user's program or to aprocessor,
, th~ monitor communicotesthe TCB address via general reg­

ister O.PrOcessors may fetch the card image of the command
that ca lied them by readi tig through a DCB connected to the
C device. ' ."

When rUhningin batch mope, the processor must read the
C device once to .cIear,the control command. The com­
mand jst~ansf~rred 'fo the user's buffer to allow the user's
program ,to examine parameters.

TERMINAL 1/0

An on-line user may direct output to his Teletype at any
time during execution of a processor. Similarly, portions
of the input to a processor may come from a Teletype. In
general, Teletype I/O is the same as other I/o in its use
of M:READ and M:WRITE operators and the standard abnor­
mal and error situations. However, Teletype I/O has some
features that are significantly different from those for other
devices. Some of the differences require special attention
by processors, but the interface is designed in such a way
that processors will not have to know whether or not I/o
operations are via Teletype, providing they observe certain
conventions. On terminal I/O, iike all I/O, the user
should note that byte displacements in the DCB remain in
effect until replaced, once they have been given. The
special problems associated with Teletype I/O are outlined
in the following paragraphs.

END CHARACTERS

On input from a Teletype, each record read is terminated
by an end character (CR, FF, IF, RS, US, FS, GS). The
end character, if any, is included in the actual record
size (ARS) count reported in the DCB (bits 0-14 or word 4).
Each processor must interpret the different end characters.
Processors do not have to know that input is via Teletype,
provided they treat these characters as terminators and use
ARS to determine the actual record received.

Source files for all processors, including those in batch
operations, may have been prepared on-line. Since records
prepared on-line are variable length, it may no longer be
assumed that input records are SO-byte card images.

AJI characters received from terminals, no matter of what
type, are translated to the standard EBCDIC character set.
The hexadecimal codes for EBCDIC characters are listed
in Appendix H.

WRITE OUTPUT

The length of each output line is specified by the SIZE
parameter in the M: WRITE procedure ca II. It is term i nated
only by the character zero. That is, the user may term­
inate a message with a zero character if he wishes and
the COC routines will compute the proper message length.
Carriage return or new line characters do not terminate
a message.

Shored Processor Programm ing 99

CARRIAGE RETURN

A new line or carriage return s~uence, as appropri,ateto
'the type of terminal, is appended to the character string
suppli.ed ?y each write under the. fofl.owing circumstan<;es':'

,1.' The DeB is not M:OC.

Thus, under ordinary circumstances, carriage return char­
acters wi" be supplied when output consists of one line per
write and the DCB is connected to a terminal. By using the
suppress space option or by writing through M:UC, the pro­
gram may supply carriage returns exactly to requirements­
either none or several for each write CAL.

PARITY ERRORS AND LOST DATA

When an M:READ CAL specifies a terminal, any character
received with a parity error is replaced by SUB (USASCII
code lA) and the lost data abnormal code (07) is returned
to the user if an abnormal address exists. If there is no
abnormal address, control proceeds to the CAL plus 1.
The line is returned to the user's buffer and the program
may expect to encounter the SUB code as it scans.

In designing a response to messages that contain parity error
characters, two facts are important:

1. The user has already been informed of the error by the
COC routines that echo the exact bits received on the
line followed by the H character.

2. If the received image is sent back to the termi~al to­
gether with an error message, the H character wi II be
printed when SUB codes appear.

In the absence of special considerations unique to the pro­
cessor, it is recommended that lines received with lost data
be sent back to the terminal together with the comment
"EH ?". This procedure is helpfu! as an aid in diagnosing
faulty terminals and communication lines.

ENO-OF-FILE

If the user types the character pair ESC F, an end-of-fi Ie
abnormal code wi II be returned to the program reading the
terminal at the abnormal address (if there is one). An input
line that contains all characters received prior to the end­
of-file sequence will also be transmitted to the user's buf­
fer. This line is always terminated with a carriage return
which is also sent to the user's terminal. If no abnormal
address is specified, the line appears as an ordinary input
line. If both bad data and end-of-file occur in the same
input, then the bad data is reported.

100 Shared Processor Programming

OTHER ABNORMAL CONDITIONS

If ~mknown operations are requested of the COC routines
(e.g., \A,rite end-of-fi Ie), the abnormal code for beginning­
?f-tapewll1 be r~tu;n~d,. If there is no abnormal address,
the operation will be i~9nored.

FORMAT CONTROL

cae routine action for th~.various formatting CALs is
specified in the CP-V/TS Reference Manual, 9009 07. It
is briefly reviewed below.

It is sometimes necessary to print a line with special spacing
or without a carriage return. Processors can obtain verti­
cal carriage control by means of two parameters (SPACE
and VFC), both of which can be set by the DEVICE CAL.
The SPACE and VFC parameters have the following inter­
pretations for Teletypes.

Parameter

SPACE

VFC

Meaning

If this parameter is set and YFC is not on, the
number of spaces indicated minus 1 is in­
serted before each write. Counts of 0 and 1
result in singfe spacing.

If this flag is set, the COC routines simulate
the printeris vertical format control as speci­
fied in the first character of the text lines
written. The simulation is limited fo one of
the following cases:

Hex. Code

Cl-CF

Fl

60,EO

Action

COC inserts 1-15 spaces be­
fore printing.

COC skips to top-of-page by
skipping six I ines and printing
the heading information fol­
lowed by the print line.

COC does not insert CRLF
after the print line (suppress
space).

For page control, COC routines count the number of lines
transmitted to and received from the user's terminal. New
page headings are printed for every read or write when the
line count exceeds the maximum specified in j IT (via the
PLATEN command). New page headings are also printed if
the user program issues a PAGE device CAL or if the termi­
na� user types the FF character L c (CONTROL L).

Information in the page heading may be specified by the
user by means of the HEAD£R and COUNT device CALs.
Heading information is taken from the DCB through which
the read or write was given. Thus, if a write call is issued
to a Teletype through more than one DCB, the heading

printed depends upon the DeB through which the ~p line of
the page was written.' The automatic page heading O'ccupies
one line and contains CClrrent time, date, user Ilame and
account number, user identification and line number, page
number, and possibly an adminisfrative~ message .. Headings
specified in the DCB tff the read or w.rite ,ar'e-produced after'
the al!tomatic heading with position/text, and 'page number,
as specified in the CP-V/BP Reference Manual, 90 17 64."
The page count in this heading is that carried in the DCB
and is reset with each COUNT device CAL. The page count:.'
for the automatic heading is carried in JIT andrnay be reset
via the TEL PAGE command. The automatic h~ading is sup­
pressed if the page length is less than eleven,'lines. Head"':
ings are also not printed if the automatic page heading is
turned·off via the TEL PLATEN command. .

Tab characters are replaced with an appropriate number of
blanks in input lines. Tabs are notrequired in output tines.
However, if a highly formatted output line is sent to the
Teletype, the operation will be more efficient - and more
satisfactory for the on-line user. Tabs are activated by in­
serting a tab character (X '05 1

) in the output stream. Tabs may
be sent directly to the terminal or simulated by the software
as requested by the terminal user who may turn simulation
on and off using the sequence @l T. When simulated by the
software, each tab character in the output stream causes
insertion of spaces to move the carrier to the right of the
next higher position specified in the DCB.

Simulated tab stops ~an be set by a processor with the TAB
device CAL or by an 'on-line U3er (for the M:UC DCB) with
the TABS command. Tabs must be specified in ascending
orsJer beginning with tap stop position 1. Note that this is
different from the line printer tabbing, where the tabs need
not be in ascending sequ.ence. Tab stops can be set at any
time for any DCB. During output operations, tabs are
expanded as specified by the DeB through which the write is
issued or, if not specified there, as specified in the M:UC
DCB. Tabs typed byanon-lineuser are simulated atthe user's
console according to the tab settings in the M:UC DCB.

If the backspace character is typed at the terminal, the
character is passed to the reading program. No special
action is taken by the COC routines other than that neces­
sary to record current carrier position (which for backspace
depends on terminal type). Terminals that have a physical
backspace may, at the user's option, use a "backspace-edit"
mode for intra-line editing. (Reference: CP-V!TS Reference
Manual, 90 09 07.)

A program can request control when the user presses the
BREAK key by means of the M:INT procedure. Whenever
the user presses the BREAK key, the program environment at
the timeof the break is recorded in theuser's pushdown stack
in his TCB. Execution can be returned to the location fol­
lowing the interrupted instruction byexecution of the M:TRTN
procedure. A program can return break control to TEL by
executing the M:INT procedure with a break routine address
of zero. The break routine address is checked by the monitor
to guarantee that the address lies within the memory allo­
cated to the user. Even if a processor has obtained break
control, an on-line user can return execution control to TEL
by pressing the 8) @ ,8) Y, or yc keys.

As ci safety measure to proh~ct I'he user ogai nst faul ty pro­
gramming in break controi routines, the number of times the
BREAK key is pressed b}, ,0 user without intervening char~
octeTS is recorded. When the count, reaches four, control
j~ ~ent t9 TEL:as if YC~od been pre'~ed. Thus, th~ user at
the terminal "Nill, never find himself locked out. The count
'of four cllowS'p.rt>cess~rs ,(e.~. '. Fij'p) to make special inter-
pi"etqti.ons on tvio arid tlfre'e· breaks in. a row.

. FILE EXTENSIOI

File extension is a convention by which records are added
to an outputfi Ie by successive job steps. Each time the file
is opened, the file pointer (tape, disk pack, etc.) is posi­
tioned to a p oint immediately following the last record in
the file. Thus, when additional output is produced it is
added to the previous contents of the fil~, thereby extend­
ing it. Fi Ie extension simulates output to physical devices,
such as I ine printers or typewriters, when output is actually
directed to a file.

Fi Ie extension takes effect at the time C P-V opens system
output DCBs. The output DeBs that are affected by file
extension are those that are currently assigned to files, al­
though normally assigned to devices. They include: M:LO,
LL, DO, PO, BO, SL, SO, CO, AL, EO, and GO.

File extension is discontinued when a file is reassigned
with a SET or ASSIGN command or when a file is opened
with an OPEN procedure call that specifies an expl icit
file name. In these cases, a new file is created. Exten­
sion of the GO file is terminated following a LINK, LYNX,
or RUN command.

SHARED FILE USE

Shared processors must ensure that temporary files used
during operation are distinct for each instance of exe­
cution. A common technique for accomplishing this is
to append the current users 10, from the right half of the
first word of JIl, to the filename when it is created and
used. This 10 is guaranteed by the system to be unique
for 011 concurrently running batch or on-line programs.
,A discussion of shared files is contained in CP-V/BP Ref­
erence Manual, 90 17 64.

COMMAND PROCESSOR PROGRAMMING

A command processor is a shared processor which inter-·
faces between the user and that which the user wants to
access - the monitor, a processor, or another program.
Four command processors are supplied with CP-V. They
are LOGON, TEL, eCI, and EASY. CP-V will also
support installation-specific command processors. Infor­
mation about the programming of command processors is
outlined below.

Cc;>mmand Processor Programming 101

Generally, command processors have the same restrictions
as listed for shared processors previously. In addition:

1. A command processor may not ho'va any overlay
structure.

, '

2. A 'commcind processor whi<:h,tes'id~s, ij1 the special pro­
cessor' cirea'(above X'lCOOO') maOy not have any dynam"ic
data and must be biased at X'I C409' .

3. A command processor must intercept all exits, errors,
and aborts from user programs and must clean' up cor­
rectly. (Special CALs for command processors are
I isted below.)

4. Command processors should not be given special JIT
access. (The special CALs for command processor in­
terface el iminate the need for it.)

5. When programs error or abort, control will be given to
the command processor with the foflowing restrictions:

If the command processor resides in the user
program area (XI AOOO' to XI 1 COOO' J or the user
program is loaded in the extended mode (X1AOOOI­
XII FFFF'), the exiting user program will be com­
pletely disassociated before associating the com­
mand processor, eliminating the possibility of
continuation of the (ob step.

If the command processor resides in the special
area (X'lC600' to X'1 FFFF'), has no dynamic data
or DC Bs, uses only M:UC and M:XX, control will
pass to the command processor with the user intact,
allowing analysis of the exit and continuation of
the current job step.

Command processors may be entered into the system during
PASS2 of SYSGEN by using the T, B, G, and C flags of
the :SPROCS command. They may also be added to the
system, replaced, or deleted from the system via the DRSP
processor.

The following capabil ities are available to command
processors:

1. Interpretive Exit - An interpretive exit is a natural
exit CAL (M:EXIT) performed by a cOmmand processor
with the following register setup required.

R6,R7
R8

R13, R14

Rl0,Rll

Contain the TEXTC name of the requested
load module or shared processor. A maxi­
mum of seven bytes is 01 lowed for a shared
processor. If R6 is zero and the command
processor is special shared, (biased at
X' 1C400'), the program is reentered at the
point of internJption.

Contain the account (in TEXT format) in
which the load module resides. :SYS is
specified for shared processors.

Contain the password in TEXT format. If
there is no password, zero should be used.

102 Command Processor Programming

RO,Rl Contain either FDP oLDELTA in TEXTC
fqrmdt o~a, :z;~ro; 'If one of the two debug­
,,gers'i~$pEtci(red, the interpretive exit is to
: b~,t91<~h :wHh the debugger associated.

, ."", :;.
,Th~ s.ys!em,i.oQ.step ,processor, STEr, interprets such an

: e?"it -as- a 'cctU"on the specifi ed program. It a Iso I Dads
the tEXTC' name of the commond processor that issued
·iheinterpreHve exit into R4 and RS; Before a com­
'"mand processor issues an interpretive exit, it must have
closed all its DCBs and, in general, have cleaned up.

The iob step processor arbitrari Iy removes the command
': processor from the user's virtual map.. This means that

all data and DCBs ate gone.

2.' BREAK and CONTROL Y Control - If the terminal user
depresses the BREAK key during operation of a pro­
cessor or user program and that program did not request
BREAK control, the program is aborted and the com­
mand processor is loaded and entered with bit 30 of
J: TElFLGS in the J IT set. If the interrupted program
has requested BRE~K control, the program's BREAK rou­
tine is entered.

If the terminal user depresses CONTROL Y during the
execution of a processor or user program and the com­
mand processor is not special shared, the program is
aborted and the command processor is loaded and en­
tered. If the command processor is special shared and
has no data and no DCBs, the user program is left as is
and the command processor is entered. This gives the
command processor the opportunity to continue the
interrupted program.

If the terminal user depresses CONTROL Y whi Ie a
command processor is in control, the event is ignored
and the current operation is continued where it was
interrupted.

If the terminal user depresses BREAK while a command
processor is in control and BREAK control has not been
requested or BREAK control has been reset via the
M:INT CAL, the BREAK event is ignored and the com­
mand processor is continued where it was interrupted.
If a command processor has requested BREAK control,
it is interrupted at its BREAK control address.

The format of the BREAK control CAL is:

CALl,8 FPT

where FPT points to word 0 of the FPT shown below.

Word 0

If the CP bit is set, the BREAK control fOu1"in;, of the
interrupted program ts re~tobfished~ This allows a user to
depress CONTROL Y while in 'Q progrqrn with .BREAK c;on-.
trol, enter his special share'd··.,".dmW<l9d.p;~c$ssor \Yhich
reme.nbers the old BREAK controladdr~.s, Qi'ld, t,henestab­
lish BREAK control fO"~i:he commandp~oceSSor .oJ "If the uSer
wishes to continue, ',the command proc~so~,mqy set, the
CP bit and execute the BREAK control CAL befQr~ 6?titing
back to the user's program. The BREAI< routine oddrec~ in
this case should be the one that was active when the c~­
mand processor was first entered as a result of CONTROL Y.

3. Exit, Error, Abort CAL, and I/O Abort Control - If any
exit or abort condition occurs during execution 'Of a
program, the program is aborted. and the command pro­
cessor is loaded and entered. Error conditions are de­
scribed in four fields of the JIT as follows:

• J:ABC is the address of the word in the JIT that
contains the abort code in byte 0 (see Appendix B
of the CP-V!fS Reference Manual, 90 09 07).

• ERO is the word offset into the JIT of the word
that contains the abort subcode in byte 3.

• J :RNST is the address of the word in the JIT that
contains the current run status. Status seHings are:

Bit 25

&it 26

the mmdmum scratch tape limit
exceeded.

the maximum temporary disk space
limit exceeded. ,:'

Bit'27., .. the,·max,imum permanent ctisk" $~ace
, hmit exceeded.

. Bit 28

Bit 29

Bit 30

Bit 31

the maximum diagnostic pages output
I imit exceeded.

the maximum user pages output limit
exceeded.

the maximum processor pages output
limit exceeded.

the maximum punch output limit
exceeded.

4. CAL Control of JIT Error Condition - This CAL allows
control of JIT error conditions without special JIT ac­
cess. The form of the CAL is:

CAL 1,4 fpt

All where fpt points to the word shown below.

zeros means the job is executing normally.

Bit 1 if set, the job is to be errored because of
an M:ERR call to the monitor.

Bit 2 If set, the job is to be aborted because of
an M:XXX call to the monitor.

Bit 3 if set, the job is to be errored because of
an E key-in by the operator.

Bit 4 if set, the job is to be aborted because of
an X key-in or a I ine disconnect.

Bit 5

Bit 6

is reserved for future use.

if set, the job is to be aborted because a
limit has been exceeded (e.g., maximum
pages out).

Bit 7 if set, the tob is to be aborted because of
an error (most likely I/O) as specified in
J:AOC and ERO.

Bit 8 if set, the job is to be aborted because of
an illegal trap.

• J:ASSIGN contains the address of the word in the
JIT, the rightmost nine bits of which indicate which
limit was exceeded. This field is set In conjunction
with bit 6 in the RNST field of the JIT. The bits,
if set, mean:

Bit 23 the maximum disk allocation limit
exceeded.

Bit 24 the maximum time limit exceeded.

5.

The monitor (the AL TCP portion) verifies that' the pro­
gram issuing the request is a command processor through
use of UH:FLG. It then sets J:ABC, ERO, byte 0 of
J:RNST, and bit 30 of J:TELFLGS to zero. (Bit 30 of
J:TELFLGS indicates whether or not the BREAK key has
been depressed.) If the program issuing the CAL is not
a command processor, control is returned to the user
program with CCl set.

Registers - Upon entry to a shared processor from a
command processor, the registers must contain the
following:

RO the TCB.address of the user program.

R4, R5

R6, R7,
R8

the name of the calling command processor
in TEXTC format.

the name of the called processor in TEXTC
format.

R10, Rll the password in TEXT format (zero if none).

R13, R14 the account of the called processor in TEXT
format.

6. CAL Control of Terminal Modes - Control of terminal
modes is provided by a variation of the Change Ter­
minal Type CAL (see the CP-V ITS Reference Wlan­
ual, 90 09 07).

Command Processor Programm ing 103

PUBLIC llBRARlES

The system may have several shared public libraries. Each.,
library is a unit tailored to the requirements of the, it;lstalla-'
Hon. The user associates a public library with his' program
by specifying the library name (PLwhere i,=0-9, JO, or J.)
in a LINK or R~N command.' The rule governing library.
uni ts are as fol lo~ys;' .

1. link load~ the7:v~, do,ta immediately above the area'
reserved for the HbrarY,data. Load res,;rves an entire
page for library data.

2. No initialization is provided for this temporary library
data either by the loader or by the system. There must
be an initial ization program if initialization is required.

3. Each library unit must separate data (CSECTO) and pro­
gram (CSECTl) information into separate assembl ies so
that separate ROMs wi II be produced for each.

4. All code must be under CSECTs with protection type 0
for variable data or 1 for procedure and constant data.
No DSECT section may be used.

5. The library must be self-contained (i.e., there can be
no unsatisfied references). This must be true for the
data portion itself and the total I ibrary. For example,
a FORTRAN I/o libr?ry must searc~ the DCB chain
rather than make a direct reference to the DCB itself.

!

CP-V PUBLIC LIBRARIES

Six public libraries are available to the system programmer.
One library (:Pl) includes the most commonly required rou­
tines from the Extended FORTRAN IV library (about 65 rou­
tines). Another (:PO) includes :Pl plus the FORTRAN Debug
Package (FDP). A third (:P4) includes :Pl plus the FORTRAN
real-time features. The fourth library (:JO) contains the JIT
definition. Iv\ost executing users need only the first library;
users who are debugging need the second; real-time users
need the third. The fifth library (:J1) contains the monitor
(M:MON) definitions and is useful on'y to programs which
inferface directly with monitor tables and routines. The
sixth library (:J2) is actually a subset ·of:J1. It contains
the definitions for the LITERALS module of the monitor and
is useful primarily to programs that wish to access the moni­
tor's extensive literal and constant pool in order to avoid
duplicating these items. (Alf programs have read access
to the LITERALS module.)

The ent ire Extended FORTRAN IV I ibrary cons is ts of 252 rou­
tines (ROMs) totaling more then ten thousand instructions
and over 800 data words.

The package includes more than 350 DEFs. These routines
are described in Extended FORTRAN IV Library Techn ical
Manual, 90 15 24, and Sigma 5/7 Mathematical Routines
Technical Manual, 90 09 06.

104 Publ ic Libraries

Publ icl!brary :P1 contains single anddo:Jble precision trig­
onomelric functions, exponential and logarithmic functions,
stonc.:=rd set-uproutines, initialization and termination rou­
tines" and inpl-It/output:corwersion and transmission routines.
Fewer fhan lOQ~ W9rds ~f storage are fequired for tempomry
storage by each user of the library. Over 5100 words of I i­
brary' code are ·~hared among all co..,curren~ users.

FDP users require public library :PO which consists of nearfy
. 1400 words of temporary storage per user; over 10,000 words
of c.ode are shared ar:nong the concurrent users.

Real-time users require public library :P4 which consists of
fewer than 1000 words of temporary storage per user; over
5300 words of code are shared among the concurrent users.

The remaining rouf-ines (approximately 190) of the complete
FORTRAN I ibrary are organ i zed in two ways:

1. They are organized in the :BLIB file as card-i~age ROM
decks that are used by the Link loader to satisfy library
references .

2. They are organized in the :LIB/:DIC files us 22 library
load modules.

This organization permits rapid loading by the overlay loader I ..
or Load. The overlay loader uses the file :DIC, which con­
sists of a record keyed by each DEF in :LIB and the group'
number as its value to find the lM names necessary to satisfy
references.

Real-time versions of :BLIB, :LIB, and :DIC must be main­
tained in the real-time system account (e.g., :SYSRT).

One essential monitor subroutine must be added to the stan­
dard released library, S :OVRL. It is normally added during
the System Generation process but must be remembered when­
ever a new I ibrary is being installed.

The size ai1d description of routines in :l1B are given in
Table 40.

: CREATING PUBLIC LIBRARIES

Users may add their own p-ybli~ libraries to meet specific
requirements. The necessary procedures are given below.

The procedure for creating public librariesconsists of several
steps. The desired data and program elements are loaded,
and the dictionary for the library (DEFs) is filed for loader
use. Next, the procedure is filed so that SYSMAK can place
it on swap storage during system initialization. In the
process, the program SYMC ON is used to retain only those
DEFs required in the final linking process, thus saving loader
stock search time. Figure 13 ill ustrates the process of creat­
ing a public library.

Group

1

2

3

4

5

6

7

·8

.9

Table 40. Routines in :LIB Libr~ry FHe Table 40. Routines in :LIB Library File (co~t.)

Size Description Group
..

Size Description
.....

.. -
96 Complex double prec iSion, 'mathe-

'. mqtical routine drivers.

72 Cori\plex mathematic.al routine
drivers.

10 ~ 76 " ~isceHaf.leous real functions.

11 78, Log ic61 functtons.

12 18 Conversion routines.

92 Double prec is ion mathematical
routine drivers.

13 362 DSINH, DTANH, ,DA~l~~·.
E>TAN.

86 Single" precision mathematical 14 308 Miscellaneous nonnumeric functions.

277'

618

538

74

104

rou·tine drivers.

External revisions of compiler
intrinsic functions.

Complex double precision mathe-
matical routines.

Complex single pre~ision mathe-
matical routines.

Double precision mathematical
routines~ ,

Miscellaneous integer functions.

Data ROMs for
Publ ic library

1

15 20 Overflow and divide check.

16 508 Nonstandard and asynchronous I/O.'

17 750 Input and I NPUTL.

18 160 Random access.

·19 514 Disk buffer.

20 102 Keyed file I/O.

21 836 Namelist I/O.

22 938 Defined file I/O.

t LOAD Adds DEF :Pn to stack with value
Data LM I equal to size of da~a in source LM

DEFCOM

Public library DEFs
for (:Pn) used by
link and "toad.

-

(:Pnnn) ~

. + DEFCOM

o EFs for Data
(:PnDATA)

I

Procedure ROMs
for Public Li.brary

I
~ LOAD (or LYNX)

r-------~----~

Public library
LM {:Pnnj

r' t SYMCON

Public library LM
(:Pnn) with only
necessary DEFs •.

I
~ SYSMAK

Abso I ute Copy of
procedure on swa p
storage.

Note: n = 0-9 for public libraries 0-9.

Figure 13. Public library Creation Process

Public Libraries 105

Default looding for Link indude~, the basic FORTRAN public
librqry (:Pl) and a search of the system (RC'J.v\) library if
there ore u:lsaHsfied references. This i$ the same as if the
user had specified (:Pl) in a Rut,;'oi", LINK command. If the
user 'hci~, hot, explicitly asked for :Pl and, no reference to
9INITIAl 'is- found, the procedure for :Plis not associated
with the uset program execution although,the 90.0 ddta words
remain comn-Iifted becaQse of the sin91~ pass load~r ~per­
ation. Figure 14 is a g~neralized flow of the LINK process
relative to libraries.

Since the overlay foader operates in two passes, it makes
on explicit association of :PO and :Pl to a program in
absence of other instructions. This process is illustrated in
Figure 15.

Real-time users must specify public Ii brary :P4 and the real­
time version of the system library. This means that the Link
processor requires specification of P4 and inclus ion of file
:BLIB in the real-time system account (e. g., :SYSRT) as a
library file identification. It also means that the overlay
loader requires specification of :P4and the real-time system
account in the library account list.

SHARED PROCESSOR MAINTENANCE :U1RSP)

Development and check out of CP-V systems is simplified
through use of DRSP (Dynamic Replacement of Shared Pro­
cessors). DRSP allows replacement, creation, or deletion
of shared processors while the system is operational. The
extra processor space in the shared processor tables must be
allocated during system generation (PASS2). Processors
that are normally invoked following a recovery cycle
(ALLOCAT, GHOSTl, RECOVERY, and XDELTA) are not
dynamically replaceable. DRSP must be run as a shared
processor in order to maintain integrity of the monitor1s
processor tables.

Note: XDELTA (Executive Delta) is an additional debug­
ging aid that is optionally retained at system ini­
tialization. XDELTA is described in the Delta
chapter of theCP-V/fS Reference Manual, 900907.

DRSP can be run either as an on-line or a botch processor.
Input can be either from the command device or from a
terminal. DRSP is called on-line by entering the name of
the processor as a TE l command.

Example:

!DRSp8

DRSP HERE

106 Shared Processor Maintenance

The DCBs lJsedbyDRSPwnich rr:aybe assigned by the userare:

l.

2.

3.

M:SI for command language input.
, .

M:LL for terminal output.

M:SL for I isting of input commands during a batch run
and diagnostic message output.

DRSP COMMANDS

The seven DRS P commands are

ENTER

REPLACE

DELETE

LIST

LIS TALL

?

END

In the DRS P command descriptions, the term 'proname l refers
to the name of a processor as found in the shared processor
tables. The file specified by proname must be in load module
format.

All of the above commands except II ?II· can be followed
by comments, which will be printed as part of the com­
mand line during a batch run of DRSP. To add comments,
terminate the command with a blank character followed
by a period. All characters entered after the p~riod are
treated as comments. The comments are terminated by @)
or end-of-card. Comments cannot be continued to the
next record.

EtnER The ENTER command is used to enter a new
shared processor into the system.

The format of the command is

E[NTER] proname [{~I~~}fid][,oPtion] [,option] [,option] i

, where the options are as follows:

[J][S][D][P] [M][x][T] [B) [G] [C) specifies one or more
flags to be associated with the processor. The
flags indicate the following.

J processor is allowed to alter the JIT.

S spec ial shared processor.

D processor is a debugger.

p pub I ic library.

Error Message:
Compiler for debug
and library not
associated.

yes

Assoc iote P 1 and
s~nd warning mes­
sage if not actually
needed.

R~ Gnd~Lood
'Specified ROMs.

flag DeB REFs
to be built later.

NP

Open and
search :BLIB

Figure 14. Generalized Library Load Process (Link)

no

Search for library
fi les and load
those found.

Associate
public libraryo

Shared Processor MaIntenance 107

Process R OMs or lMs
. from harned fi !as and/or
·from8Iot GO.

Determine which :Pn
(~ither :PO or Pl).

Initiafize UNSAT list.

no

Get next U NSAT entry.

yes

Satisfy r~maining REFs
from :lIB in this account.

Determine which :Pn
(either :PO or :Pl).

Get the requested
:Pn (from :SYS) and
associate it with the
load modure being
built.

no

yes

Note: If NOSYSLIB is presenton the f LOAD card, the UNSAT list is empty or consists of those sources (accounts and/or :Pn)
mentioned under the UNSAToption. If NOSYSLIBis not present, the UNSATlist consists of the above plus the :SYS
account {wh ich occurs last}. For LYNX, the NL option has an identical effect upon the library account list.

Figure 15. Generalized library Load Process (Overlay Loader)

108 Shared Processor MaIntenance

·M

x

T

B

G

C

processor allowed maximum ,memory during
execution.

p,ocessorallowed i"o execute tile M:S YS CAL.

command processor accessible by terminal
users. '.

command processor accessible by batch
users.

command processor accessible by ghost userS.

command processor accessible by terminal,
batch, and ghost users.

If 0 or P is specified, Sis redundantand is assumed.
If the C flag is used, the specific flags (T, B, G)
are redundant and should not be used. Various
combinations of the above are possible up to a
maximum of six characters; e.g., a processor that
is allowed to alter the JIT and has maximum mem­
ory available for execution would be flogged JM.
The flag combination PD or usage of the P flag
when the processor name is other than :Pnn results
in an error message.

rERM specifies that the processor is to be available
;to users even after a system crash. The processor
~~ill be present both in the system account (:SYS)
~ol)d,.9n swap disk. "Empty" slots must be avail­
Qb~e in the disk copy of the processor tables. If
this option is not used, the new processor version
will reside only on swap disk and will be lost in
the event of a crash. The version of the processor
that will be restored is the version in the system
account at the time of the crash.

W specifies that if the proname cannot be entered
into the processor table because there are no name
slots free, DRSP is to wait until there is a slot
available. If this wait option is not specified,
the command terminates witpout entering the
new processor.

REPLACE The REPLACE command is used to replace an
existing shared processor. If this command is used, the
previous version of the processor is lost. However, cur­
rent users conti nue to use the old copy unti I they are
disassociated from the processor.

The format of the command is

R[EPLACE] proname [{~l~~}] fid [,option][,option)[,option]

where the options are as follows:

[J][S] [D][P] [M] [X] [T] [B) [G) [C) specifies flags to be
associated with the processor. The option is the
same as for the E NTE R command.

PERlv(' . specifieS' thClt.th~a·~~"y~,rsion of the pro­
cessor is to be available to users'ev\:!n'~lcr.Sl su:~:~
tern crash. This version of the processor will be
present both in the ,system account (:SYS) and on
swap disk. "Empty" slots must be available in
the disk copy of theproce.ssortahles. If this
option is not used,· the, new, '.processor version will
reside only on swap disk and will be overwritten
in event of a crash by the processor version in the
system account.

W specifies that if the proname cannot be entered
into the processor table because there are no nome
slots free, DRSP is to wait until there is a slot
available. If this wait option is not specified,
the command terminates without replacing the old
processor.

DELETE The DELETE command prevents further user
association with a processor. Users associated with the pro­
cessor when this command is issued wi" continue to use the
processor unti I they disassociate.

The format of the command is

D[ELETE] proname [, PERM]

where PERM specifies that no new users wi II ever be asso­
ciated with this processor (even after a system crash).

LIST The LIST command lists the processor nome, the
name associated with each entry in the processor n~rne table,
and the amount of disk space occupied by the processor.

The format of the command is

lOS U n{pronam~}~
,~ #xx[-yyJU

where

proname specifies an explicit processor name. (The
proname M:DUMLM appears many times in the pro­
cessor tables. If sel ected, a II these entries wi II
be listed.)

xx-[yy] specifies the name table index or a,range
of name table indexes to be listed.

Initial use of the LIST command with no proname or index
specified wi" provide a list of each processor table entry
and its corresponding table index.

'LiSTALL The LISTALL command lists each shared pro-
cessor name and its entries in the following tables:

PB:HPP Head of the physical page chain.

PB:TPP Tai I of the physical page chain.

PB:DSZ Number of data pages.

Shared Processor Maintenance 109

Pb; Dcasz Number of DCB pages.

PH.PDA Diskaddres$ of first procedure'p~ge.

PH:DDA Disk add~ess of fir:;~ pa'g~ of datt) and DeBs.
'. t.. ~

PlkUC .Nori,be~r of lJ~~h' in core, us!:ig the processor.

+-,

PB: LNK- , Proc~ssor humber of next ov~rlay.

PB:PVA Virtual page nJmbe~of first procedure page.

PB: HVA Vi rtua I page number of fj rst unused page.

P:SA Processor flags and start address.

The format of the command is

LIST A Ll~ pronam~}n
~ #xx[-yy"U

where proname and xx[-yy] are as defined in the LIST
command.

? The question mark command requests a detailed error
message when an error has been noted by DRSP. The com­
mand is applicable only for the on-line mode. Its function
is described indetail inthe section "DRSP Error Messages".
The format of the commend is

\
? I

END. The END command terminates DRSP. The format
of th~"tommand is

END

DRSP LIMITATIONS AND RESTRICTIONS

The following lists DRSP limitations and restrictions:

1.

2.

Only users with a privilege level of CO or greater are
allowed to use the ENTER, REPLACE and DELETE com­
mands. The LIST command requires a privilege level
of 80 or greater.

There must be sufficient space in the swap disk
processor/overlay area to hold the new or replacing
entry. This extra space is allocated by SYSGEN
PASS2 via a :SPROCS control card.

3. Replaced or entered items must be accessible load
modules.

4. Onlyone level of overlay is permitted in a processor.

5. A processor overlay must be PROCEDURE only.

6. ALLOCAT, GHOSTl, RECOVER, XDEL TA, M:DUMLM
may not be processed with DRSP commands.

110 Shared Processor Maintenance

7. Over,!c5ys: tor pro,cessors cannot be replaced or entered
indivjd~&tlly.

'c 8. GETs of pro~rams saved with an associated processor
most like I y wi II not work if the processor has been
changed between SAVE and GET.,

.....
. ~

iJ,' .
,J-. 9. When replacing the FILL processor a modified proce­

dure is required: Following REPLACE FILL WITH
N.A. P. I OPTION 1 thru 3, the user has to abort the
FILL ghost. This is done via a message to the operator
to key in X, id, where id is the SYSID of the FILL
ghost which appears when the message 'REQUEST FILL,
NO FILL, OR INSTANT SQUIRREL (F, N, S)I is output
on opert.ltor1s console. This will ensure that the FILL
copy in the user swap disk area is destroyed and the
replaced version of FILL is brought in the next time
FILL wakes up.

DRSP ERROR MESSAGES

The error message structure of DRSP is designed to give a
user detailed information when so desired without burdening
him with long typeouts when the error is obvious. When
running on-line, DRSP wil-t'r.espond to commands in error
by typing . ,

EH@n

where n is the character position at which an error was first
detected. If the user requires more information, he responds
with a question mark (?). DRSP responds with a detailed
error message (see Table 41). If the error is obvious, the
user may retype the command (or proceed to the next com­
mand). For errors that occur after command syntax is com­
pleted, this message changes to

EH

since command character position is meaningless.

In batch mode, the detailed error messages are printed with­
out the interrogative sequence described above.

In addition to error messages, certain other messages are
given for information purposes only (see Table 42). No re­
sponse is expected.

Except' where noted, the error condition truncates execution
of the requested command.

I DRSP COMMAND SUMMARY

Table 43 contains a summary of commands for the DRSP
processor. The left-hand column specifies the format and
the right-hand column defines the function.

Table 41. DRSP Error 'Messages
,,;--- 1

Message Meaning '" I ,
,

I BREAK 50.; . ,
lls.,j.~BREAK during DRSP execution. Th~ .nu,,!ber deflnest~epo~nt at which

BREAK 51 the . processor exited, os .. ,descr.ib.edin the ·UTSRefiobifity and Mainiain- •
BREAK 52 dbilft; 'Technical Manual, 99' 19 90:"" - . .,.
BREAK 53

,<; ,',

CANNOT OPEN THE FID DRSP cahnot access th'e loa'd:~ti.'e,.defjned by -th~ fide
" . ,. ...

. '\. ~ .

CAN'T OPEN M:BO (PERM) I/O arror detected while trying to open the output file in :SYS. The processor
is entered/replaced on non-"PERM II basis.

DON'T USE COMMAND ON ENTER or DELETE commands must not specify the proname 'TEL' or ICCI' •
TEl/eCI .-

, DRSP I/O ERROR IN READING Error detected in reading DRSP command.
COMMAND

DRSP I/O ERR/ABN (CLOSE) Erro or abnormal condition detected at CLOSE of output file. The processor
is entered/replaced on non-" PERM" basis.

DRSP M:BO ERROR (PERM) I/O error detected while writing or closing the output fi Ie in :SYS. The
processor is entered/replaced on non-" PERM" basis.

DRSP M:EI ERROR (PERM) I/O error detected while reading file fid. The processor is entered/replaced
on non-" PERM II basis.

DRSP M:EI ERROR,(WRITESWAP) I/O error detected while reading fid for writing on the swap disk.

DRSP NOT FOUND IN DRSP must be run as a shared processor in order to maintain integrity ovel.' the
PROCESS OR TABLES monitor's processor tables. ~. ~-

DRSP PROGRAM ERROR DRSP detected contradictory conditions during processing. Requires system
(SHOULD NIT HAPPE N) programmer intervent ion.

ERR MSG NOT FOUND. ~o error message corresponds to the error code xxxxxx generated. Please
KEY = xxxxxx report thi s system error.

FID IS NOT A LOAD MODULE Error or abnormal return executed while trying to read the TREE record of the
load module specified by fide

FILE STORAGE LIMIT IN When writing the load module into the :SYS account for the PERM option, the
SYSTEM ACCOUNT file space for that account is exceeded.

ILLEGAL COMMAND Command entered is not defined in DRSP.

ILLEGAL COMMAND OPTION An optional parameter typed in the command is not recognized.

ILLEGAL INDEX RANGE Index specified in LIST/LISTALL command not within legal range of processor
name table.

ILLEGAL LMN (LOAD Illegal load bias detected when processor written to swap disk.
BIAS CHECK)

ILLEGAL PRONAME, NOT A processor flagged as a publ ic library must conform to the name format :Pnn.
:PNN FORMAT

ILLEGAL PROTECTION TYPE The load module for a public library must be root only and procedure only.
FOR PUBLIC LIBRARY

Shared Processor Maintenance 111

Table 41. DRSP Error Messages (coM.)

Message Meaning
-

INCORRECT FID The fkhpecified~ excee,ds the fiel'd mQximum for name (15 characters) or
.' , uccourit (8 characters) or password, (8 ;.charactersf

'.~

~

INSUFFICIENT MEMORY TO DRSP ha's failed to b~quire enough memory to read .• the largest record of the
READ MAX RECORD OF FID load module spe~.iH:7d as' ,fid.

INSUFFICIENT MEMORY Memory space available to user is not sufficient to process the lood module
TO READ TREE specified in the ENTER or REPLACE:;commands.

INSUFFI<;:IENT PRIVILEGE The user must have a privilege level of 80 or greater to execute any DRSP
FOR DRS P USA GE commands.

INSUFFICIE NT PRIVILEGE The user does not have sufficient privilege of CO to process ENTER, REPLACE,
LEVEL TO PROCESS THIS and DELETE commands.
COMI'-MND

INSUFFICIENT SPACE ON The disk space allotted for new or replaced load modules is too s~all for t~e
SWAP RAD load module specified.

INSUFFICIENT VIRTUAL There are not enough virtual pages to allow DRSP to access the monitor.
MEMORY TO EXECUTE DRSP

NO ERRORS No errors were encountered during command execution.

NO PRONAME SLOTS 1VAILABlE The number of extra processor name table entries is exhausted.
I

NO SUCH PROCESSOR I The proname entered cannot be found in the processor tables.

ONL Y ONE LEVEL OF OVERLAYS When analyzing the load module TREE record, more than ohe level of processor
FOR SHARED PROCESSORS overlay was indicated.

ONLY PROCEDURE IS'ALLOWED DRSP checks a load module specified as on overlay for procedure only.
IN A PROCESSOR OVERLAY

OVLY LINK EXCEEDS TABLE A system error to be reported.
LIMIT

PROCESSOR OVERLAY SLOTS There are not enough empty processor overlay locations in the name table to
EXHAUSTED fill the load module requirement. This check on the nome table occurs during

the write to the swap disk.

PROCESSO R/OVE RLA Y User tried to ENTER a processor or overlay name that exists in the table.
ALREADY EXISTS

PRO NAME IS ILLEGAL Some routine cannot be entered or replaced with DRSP (e. g., XDELTA,
RECOVER, GHOSTl, ALLOCAT, M:DUMLM).

PRO NAME REQUIRED A program must be specified with the ENTER, REPLACE, and DELETE commands.

RAD OVERFLOW Disk space allotted for the shared processors is exhausted.

READ ERROR READING I/O error detected while trying to read the processor for the copy into the
FID (COPY) system account.

SWAP I/O ERROR (QUEUE) I/O error detected while writing processor to the swap disk.

WRITE ERROR WRITING I/O error detected while trying to write the processor into the system account.
FID (COPY) The processor is entered/replaced on non-" PERM" basis.

WRITE RAD FILE I/O ERRORS I/O error detected while writing the processor to the swap disk.

112 Shared Processor Maintenance

Message

DRSP HERE

'·,.DRSP INHIBIT SET

fid NEEDS xxxx GRANULES

proname REPLACED IN RAD
SLOT Ix

PRONAME FOUND ON RAD

PRONAME NOT FOUND ON RAD

USERS ASSOCIATED

Command

O[ELETE] proname ,[PERM]

END

E[NTER) proname~~J~~}fi ~
[, option]~, option][, option]

L[IST]fproname}
IIxx[_yy]

-:

lISTALl{proname}
#xx[-yy]

R[EPLACE) pronamen~J~~} fid]

[, option][, option][, option]

?

Tabl.:t 42,_ DRSP Information Niessages

~' 'Ro~i:,ine' title· typed whenlJser fi~s~; enters DRS P~
.' y~ .- ... "-' ": ' • '

,ArJother user Jsmanipulating· the shared processor tables end prevents any
,other user executing,the"ENTER, REPLACE, and DELETE commands. However,
,the LIST and"USTALL commands can be executed at any time.

If DRSP cannot find ;ufficient disk space in any available slot, it feeds
beck to the user the number of granules required to enter/replace the
'ne* load moclule.

While exercising the "PERM" option, the proname in slot Ix has been
replaced by the proname specified in the current command.

The proname already exists in the disk version of the processor tables when
DRSP tries to execute the ENTER, PERM option. The "PERM" function is
compl eted for the new copy.

The proname cannot be found in the disk version of the processor tables when
DRSP tries to execute the REPLACE,PERM option. The "PERM II function is
completed for the new copy.

DRSP attempts to replace TEL or CCI but finds there are users associated. The
message is repeated periodically as long as users remain associated.

Table 43. DRSP Command Summary

Description

P~events further user association with a processor.

Exits normally from DRSP.

Enters a new shared processor into the system.

Lists the processor name, the name table index, and the amount of disk
space occupied by the processor.

Lists each shared processor name and its entries in certain tables.

Replaces an existing shared processor with a new shared processor.

Requests a deta iI ed error message when ,an error has been noted by DRS P.

Shared Processor Maintenance 113

8. ON-LINE PERIPHERAL DIAGNOS1'iCF' !\CllITIES

INTRODUCTiON'

This chapter describes the system foci Ii ties that are designed
for use by Xerox in the development of peripheral hardware
diagnostic programs. The system procedures and the Diag­
nostic DCB described in this 'chapter shou.ld never be used
in any user-written programs. Their description is included
in this manuaf only for completeness of documentation. Any
program that uses them may seriously affect the operation
and integri ty of the system.

The facilities described in this chapter are used in the fol­
lowing types of Xerox processors:

• Functional tests for peripheral devices that isolate hard­
ware problems to the lowest possible level.

• Exercisers that verify that the peripherals are operat­
ing correctly.

• Preventive maintenance tests that reduce the amount of
time that peripherals are down for repair.

These tests and exercisers may be run at an on-fine terminal
while the CP-V system is in normal operation.

The facilities described in this chapter include one assem­
bler directive, the special Diagnostic DCB (DDCB), and
eight system procedures. The 'assembler directive allows the
user to specify that a control section is to begin at a page
boundary. The Diagnostic DCB is a data area that allows
the user to issue his own I/O commands.

These eight procedures reside in SYSTEM DIAG along with
two other system procedures - M:D PART and D :DRET.
(M:DPARTand M:DRET are described in the SYSCON chap­
ter in the CP-V/SM Reference Manual, 90 1674, because
they are used by SYSCON.) The eight system procedures
perform the fol lowing functions:

Procedure Function

M:DDCB Generates a diagnostic data control
block.

M:DOPEN Opens the device associated with the
Diagnostic DCB for diagnostic purposes.

M:DCLOSE Terminates and inhibits all I/O associated
with the Diagnostic DCB.

M:BllST Converts the user's virtual command list
into a physical command I ist and stores
the result in the Diagnostic DCB, or
requests that a TIO, TDV, or HIO be
performed on the device to which the
Diagnostic DCB is opened.

M:SIO Initiates the user's I/O. The commands
for the I/O are stored in the Diagnostic
DCB.

114 On-line Peripheral Diagnostic Facilities

Procedure Function

M:LOCK Either locks the user in core or resum~s
'--normal swapping for the user.

M:MAP Converts a specified virhial address to a
physical address or a specified physical
address to a virtual address.

M:DMOD# Obtains the controller model number,
the device model number, and the type
mnemonic associated with a given de­
vice address, and availabil ity informa­
tion (i. e., device busy, device parti­
tioned, controller partitioned, and DIAG
key-in has been performed).

RESTRICTIONS

For both security and system performance reasons, there are
certain restrictions on the use of the faci lities described in
this chapter. These restrictions are:

1. The system manager must give approval before the sys­
tem will process some of the CALs. (Note that M:DDCB
does not generate a CAL.) Th is approval is transmitted
to the monitor via the operator key-in.

IDIAG id

where id is the diagnostic user1s id and identifies the
user as the current diagnostic user. This is reset by the
mon itor between job steps.

2. The M:MAP procedure requires a privilege of AO or
higher. The user is aborted if his privilege level is
insufficient.

3. The M:LOCK procedure requires a privilege level of
AO or higher and the user must have been specified as
the current diagnostic user via the DIAG key-in or
have a privilege level of CO or higher. If one of these
conditions is not met, the user is aborted.

4. The M:DOPEN, M:DCLOSE, M:BLIST and M:SIO pro­
cedures require a privilege level of AD or higher and
the user must have been specified as the current diag­
nostic user via the DIAG key-in. If the conditions are
not met, the user aborted.

5. User registers SRI and SR3 are volatile for the
M:DOPEN, M:DCLOSE, M:BLIST, M:SIO, M:LOCK
and M:MAP procedures.

PSECT DIRECTIVE

The PSECT directive specifies that the control section which
follows is to begin on a page boundary. This directive allows
diagnosticians to ensure that such things as the Diagnostic
DCB and buffers do not cross page boundaries. The PSECT
directive is described in detail in the Meta-Symbol/LN,
OPS Reference Manual, 90 09 52.

SYSTEM PROCEDURES

Monitor procedures enable the user's symb",fic Meta-Symbol
program to request a variety of monitor functions. The on­
line diagnostic procedures described in this chapter have
the same general format as those described in the CP-V /BP
Ref~rence Manual, 90 17 64.

When using Meta-Symbol, the monitor diagnostic procedure
library is invoked via the directive

SYSTEM DIAG

This directive defines all "'of the monitor procedures. The
Sigma" 6 and 7 computer instruction set is invoked by the
directive

SYSTEM SIG7[F] [0] [p]

where F specifies the floating-point option, 0 specifies the
decimal option, and P specifies privi lege instructions.

The Xerox 560 and Sigma 9 computer instruction sets are
invoked by the directive

SYSTEM SIG9 [p]

where P specifies the privileged instruction set.
I •

Thus, both the SYSTEM DlAG and the SYSTEM SIG7 or
, SYSTEM SIG9 directives should be used. The SYSTEM BPM

directive should also be used if any of the procedures de­
scribed fn the CP-V /BP Reference Manual, 90 17 64, are
used in the program.

CREATE DIAGNOSTIC DATA CONTROL BLOCK

M:DDCB The diagnostic data control block procedure
generates a data area in the user's program that is accessible
by the user. This data area must be given a label, the first
two characters of which are F: {e.g., F:DIAG}.

The Diagnostic DCB (hereafter referred to as the DDCB) must
be used when the diagnostician is going to perform his own
I/O through use of the diagnostic procedures described in
this chapter. In addition to containing standard types of DCB
information, the DDCB contains the user's I/O command list.
The DDCB format is de~cribed in detail at the end of the
chapter. BecausetheDDCBhasits own format, theonly CAls
that may be issued to the DDCB are the diagnostic CAls.

The M:DDCB procedure calf is of the form

label M:DDCB (DEVICE, name), (CLIST, n)[, (option)] •••

where

label is a labelthat begins with the two characters F:
and must previously have been declared a dummy
section via a directive of the form

label DSECT

DEVlCE,name specifies the device that is to be
associated with the DDCS. Name may be speci­
fied in one of the following forms:

L A device type in. quotes (e.g." 'CRt, alP').

2. An op~rational label in quotes (e.g., 'lO',
lEO').

, ..
3. The physical address of the device expressed

in hexadecimal (e.g., x'ooao', X'0202').

CLIST, n specifies that n words are to be reserved
for the userls command list. The maximum value
that can be specified for n is 24.

The options are:

SN~ r,erial number'}]

following :

specifies one of the

1. The number of words (n) to be reserved for
serial numbers. The serial numbers wi II be
inserted into the DDCB when the DDCB is
opened (M:DOPEN). The maximum value that
can be specified ~or n is 12.

2. The serial number of the volume to be used for
input or output. There may be from one to
twelve serial numbers of from one to four
alphanumeric characters each.

If the SN option is not speCified in M:DDCB, then
it cannot be specified in M :DOPE N.

ABN, address specifies the symbolic address of a
user's routine that is to be used to analyze any ab­
normal conditions resulting from insufficient or con­
flicting information. This address remains in the
ODCB until it is overridden by an ABN specifica­
tion in a DOPEN CAL.

The CLIST and SN options produce variable-length param­
eters which follow the fixed-length parameters in the ODCB.
Each variable length parameter entry is preceded by a con­
trol word of the following form:

Byte 0 is the code number (X'07' for SN; X'12' for
CLlST).

Byte 1 is the code for entry position (X'OO' means
more parameter entries to follow; X'Ol' means last
parameter entry).

Byte 2 is, for the SN option, the number of signifi-
cant data words in the parameter entry when serial
numbers are specified. Otherwise it is zero.

Byte 3 is the total number of words reserved for the
entry, not including the control word (i. e., maxi­
mum entry length).

System Procedures 115

Special Note:

After generating the DDCB! Meta-Symbol resumes, assembly
in the control or dummy section that wcis 'in effect when the
M:DDCB procedure reference line ,was' encountered. In
order to prevent the' statements following the M:DDCB pro­
cedure reference line from being assembled in the some sec­
tion as the DDCS, one of the following is recommended:

1. The control section directive' preceding an M:DDCS
reference line should be a CSECT, and the DSECTasso­
ciated with an M:DDCB should precede the CSECT.

2. The statement immediately following an M:ODCB pro­
cedure reference line should be either a CSECT or a
USECT referencing a prior CSECT.

OPEN DIAGNOSTIC DATA CONTROL BLOCK

M:DOPEN I The mon itor Diagnostic OPE N routine opens
the device specified in the DDCB for diagnostic purposes.
The DDCB will not be opened if the information in the
DOCS is inaccurate, insufficient, or contradictory. If the
M:DOPE N is made with no options specified, the existing

_ parameters in the DOCS are used. If the DDCB is already
open when the DOPE N routine is carted, an abnormal con­
dition issignaled. If the DDCB is not open when the DOPEN
routine is carred, the DOCS is reinitialized according to

,the parameters specified in the M:DOPEN procedure call.

Symbiont devices will only be opened if they have been
locked, suspended, or partitioned. Nonsymbiont devices
and devices opened with a device address specified (as
opposed to device typeor an operational label)must be par­
titioned and not busy or allocated to an active user. Parti­
tioning is accomplished by using SYSCON or as a result of
a previous DClOSE CAL with the PART option specified.

The M:DOPEN procedure call is of the form .

M:DOPEN [*]dcb name, (DEVICE, [*]name), ~

L(STATUS, [*]address)[, (option)] •• ~

where

(*]dcb name specifies the name of the DDCB.

DEVICE, [*]name specifies the device that is to be
associated with the DDCB. Name may be speci­
Hed in one of the following forms:

1. A device type in quotes (e.g., 'CRt, alP').

2. An operational label in quotes (e.g., 'lO',
'EO').

3. The physical address of the device expressed
in hexadecimal (e.g., X'0080', X'0202').

116 System Procedures

ST ATUS j .[*]addres5 specifi es the address of the user's
" data area where the,I/Ostatus is to be stored. The

'status that is tet~rliect is in the same format cs for
the" Error log (s~e;<Appendix E).

The .options are:.,

SN,'seriaf number,[,'seriaf number']... specifies
the serial number(s) of the volume(s) that are to be
used for input or output. The s~r,af number may be
from one to four alphanumeric characters. A re­
quest for the volume(s) wi II be sent to the operator IS

console when opening to a device type or opera­
tiona I label, which theop~rator responds to with an
AVR sequence (e.g., MOUNT key-in).

NOERR specifies that records of errors from th is de-
vice are to be suppressed from the Error log. How­
ever, the user has the option of writing records to
the Error log himself, with the Write Error log CAl.

ASN, address specifies the symbolic address of a
user's routine that is to be used to analyze any ab­
normal condir?ons resulting from insufficient or
conflicting information. If an X'09 1 abnormal
code occurs on the open, this open abnormal ad­
dress is set into the ODCB and return is to this
address. If an address is not present, the user is
aborted.

CHAN specifies that the controller is to be reserved
for use by this diagnostic program. A c~:mtroller
may be reserved only.if it is partitioned.

Calls generated by the M:DOPEN procedure have the form:

CAll,6 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 2 - device code (Pl)

where TEXT oplabel is an operational label in TEXT format.

word 3 - STATUS (P2)

option ABN' (P3) ,

. '"

Flags f
J

through f5 in word 1 of 'the 'FPT have the, signifi- ..
cal'\~e mdicated bel6w (when fj = 1).

Flag Significance

fl NOERR\vas specified. Error records are to
be suppressed from the Error Log for this
device.

f2 CHAN was specified. The controller is to
be reserved.

fa SN was specified. Seri 01 numbers are pres-
ent in the FPT (in the format described
beIQw).

f4 An operational label was specified. Word 2
of the FPT has the alternate form.

f5 Reserved for future use.

The format for the SN variable length parameter is identical
to that in the DDCB. The variable length parameter entry
is preceded by a control word of the form:

Byte 0 - Code number (X'07') identifying the variable­
length parameter.

Byte 1 - Code for entry position (X'OO' means more
parameter entries to follow; X'Ol' means last
parameter entry).

Byte 2 - Number of significant data words in the pa­
rameter entry (if SN).

Byte 3 - Total number of words reserved for the entry,
not including the control word (i .e., maximum
entry length).

If the user does not have at least AO privilege, the return
is to CAL+l with CCl set.

, CLOSE DIAGNOSTIC DATA CONTROL BLOCK

M:DCLOSE The Diagnostic CLOSE routine terminates
and inhibits I/O through the DOCS. I/O cannot' be per­
formed through the DDCS until it is opened again. M:DCLOSE
allows the user to specify whether or not the device is down
(partitioned).

The M:DCLOSE procedure call is of the form

M:DCLOSE [']dcb name((~ili:~ J
where

[*]dcb name . specifies the name of the DOCS.

PART specifies that the device associated with the
DOCS is to be partitioned from the system resources.

RETURN specifies that the device associated with
the DDCB is to be returned to the system resources.

SAME specifies that the device associated with the
OOCB is to remain in the same status (partitioned
or not partitioned). The default is SAME.

The Diagnostic CLOSE routine reports the status of the de­
vice to the operator with the following message:

dd{PARTITIONEO}
yyn RETURNED

where yyndd identifies the device.

Calls generated by the M:OCLOSE procedure have the form

CALl,6 fpt

where fpt points to word 0 of the FPT shown below,.

word 0

01 : DeB ~dress I
" "I" " .. " • " " wi", " " " ,. " u v '" " '" "

1*1 X'07' 10
o 1 2 31. S 6 7 8 9

where

specifies the PART option when set.

specifies the RETURN option y.then set.

f3 specifies the SAME option when set.

If the user does not have at least AO privi lege, the return is
to CAL +1 with CCl set.

BUILD COMMAND LIST

'M:BLIST The monitor BLISTroutine converts the user's
virtual command list into a physical command list and stores
the results in the DOCS. The routine validates that no
command crosses a page boundary and that the number of
I/O command doublewords Is I,ess than or equal to 12.

System Procedures 117

r

The 'JSN'S virtual commund I ist must udhere to certain

',.

-rhe ii'st must use virtu0! rather thon ph/'sical addre;,5es.

Nt:, input/outr,ul- cornrnand doublsv/ord (IOeD) is'
allowed to perf~rr~ 1/0 ocrossp p08e boundary or spe­
cifya byte count greater than one page (X'800' bytes).

The number of lOCOs must not be greai-er than 12.

I/O commands wh ich do not cause a tramfer of data'
(e. g., skip filet rewind) must have a valid byi'e ad­
dress and byte count. When such commands are used
with the ICE flag, the I/O completion interrupt occurs'
immediately. Hence, the user must handle any desired'
I/O wait-activity independently of any I/O end action.

The user may optionally request that the I/O be started. If
this request is made, the monitor will not return control to
the user until either the r€<Juest to start I/O has been re­
jected, the I/O is complete, or the I/O has timed-out. The
AIO, TDV, and TIO status and condition codes are returned
in the user area specified by the STA rus parameter of
M:DOPEN and in the exact format as for Error Log (see
Appendix E). If a TIO, TDV, or HIO request is made, the
appropriate request is executed and the status is returned in
the user STATUS area in the format:

word 0

i : : 11
10 11112 13 14 15 16 17 18 1912021 22 23 24 '25 26 27128 29 30 31

words 1 and 2-

TIO, TDY, or HIO

status

o 1 2 3 I 4 5 6 718 9 10 11112 13 14 15111> 17 18 19120 21 22 23124 25 26 27128 29 30 31

word 3

where

CC instruction's condition codes.

Dev ice address device address from DOCB.

The M:BLIST procedure call has the form

M,BlIS T [*]dcb nam era i~~I)ddresS) [, (opt ion)] 0 0 OJ

where

[*]dcb name specifies the DOCB.

ADR, [*]address specifies the address of the user's
command list.

118 System Procedures

no SPec::ies thct a tes!- I/O i5 to be performed.

TDV spe-c.ifies that (I test device is to be performed.

HIO specifLes that I/O is to be halted.

The oDYibn~ are: "', , .";." '"

PRI,l""'] priority specifies the priority of the I/O re-
quest as a hexadecimal number (e.g., X' F6').
X'FO' is the highest priority and X'FF' is the
lowest priority. (The higher the Priority, the
higher the placement in the queue of requests for
the channel containing the referenced device.)
The default is XI FF' •

SIO specifies that the I/O is to be started.

TIMEOUT, [*]value specifies the minimum length
of time allowed before an I/O timeout occurs.
The value is in decimal and represents the number
of 4.8 second intervals prior to I/O timeout. For
example, a value of 2 means a minimum of 9.6
seconds before timeout., For spindles ordisk packs,
the maximum value used is one even if a larger
value is specified. The maximum value accepted
for af! other devices is 63 and the minimum is 1.
A value greater than 63 will be. forced to 63 and
a value less than 1 will be forced to one. The
default is one. The actual time allowed before
an I/O timeout occurs ranges from a minimum
timeout of "value" * 4.8 seconds to a maximum
timeout of "value+l" * 4.8 seconds depending on
when the timeout count was in it iated. Therefore,
a TIMEOUT value of 2 may cause a timeout with­
in a rang~ of 9.6 to 14.4 seconds.

Calls generated by the M:BLIST procedure have the form:

CAl1,6 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 2 - ADR (Pl)
I

option TIMEOUT (~3)

~
I. "

.: ~ - . ,

*0- "" ". 0 ' ") . , , ,Ii', \6 ,,1i2 ,15 \. Ish, i1 .' '

where.

is set to one if 510 was spectft~. "Otherwise,
It Is set 'to zero.

f2 is set to one when a nq, ToV, or HIO Is re-
quested. Otherwlse,!t Is set to zero.

f3is set to one for a no request.

is set to one for a T oV request.

f5 is set to one for onHIO request.

If incorrect or confl ictlng information exists, the abnormal
addreu specIfied .In the DOCS wtll be used if it has been
specified. If the user does not have at teast AO privilege,
the return Is to CAl+l ~ith CCl set.

ITART 110

M!SIO The start I/O procedure call initiates the diag­
nostic I/O specifj~d in the diagnostic DOCS. After an 510,
the monitor will not return control to the user until either
the call has been rejected, the I/O has been completed
(successfully or with errors) or the VO has timed-out. The
AIO, ToV, and TlO status and condition codes are returned
in the user area specified by the STATUS parameter of
M:DOPEN and in the exact format as for &ror log (see
Appendix E). "

The M:SIO procedure call is of the form

M:SIO [*Jdcb name

where [*]dcb name specifies the DOCS.

Calls generated by the M:SIO procedure have the form

CAll,6 fpt

where fpt points to word 0 of the FPT shown below.

If there is no command list in the DDCB or the validity of
the command I ist has been destroyed by a swap, on abnor­
mal condition results. If the user does not have at least AD
privilege, the return is to CAL+l with Cel set.

LOCK I~ CORE

M:lOCK The LOCK routine either locks the user in
core or resumes normcwl swapping for the user. This lock in
core reduces the user's chances of being' swapped but does
not ensure that the user wi i I· not be swapped. The user may
ascertain whether a swap has occurred since the BLlSt CAL
by comparing J :NRS (the swap count) in the J IT with the
SWAPCT. field in the DOCS. (SWAPCT contains the swap
count at the time of the BLIST CAL.) The user has not been
swapped if the two values are equal. (The external refer­
ence J:NRS is satisfied by loading with :JO from the :SYS
account.)

The M:LOCK procedure call is of the form

where

YES specifies that the user is to be locked in ~ore.

NO specifies that normal system swapping is to re-
sume for the user. .

Once a user is rocked in core, his size may not"chmge: "
Use of the following services may result in a size modifica­
tion. In such case, the user will be swap~d.

1. Memory management CAls.

2. M:SEGLOAO, M:LINK, and M:loTRC procedure calls~

3. Associate and disassociate processor CALs.

4. Get page CALs.

Calfs generated by the M:LOCK procedure have the form

CALl,6 fpt

where ipt points to word 0 of the FPT shown below.

word 1

~" ,I.,. ,: .• "I"""":",,,,~~I?"":""'»I'~.~)
where f) in word 1 specifies that LOCK in core has been
requested (f1 = l}or that the LOCK is to be released (f1 =0).

If the user's privilege leve' is not at least AD, the return is
to CAL+l with CCI set.

System Procedures 119

CO~V[RY ADDRESS

M:MAP The M:MAP procedure converts 0 specified
virtual address to a phy.sical addr.~ss of.aspecified physical.
addre~s to a virtual addr~ss. The converted address is stored
in general register 8. The M:MAP procedure call has the'
form

M:MAP (~~), (ADR, [*] address)

where

VTP specifies virtual to physical address conversion.

PTV specifies physical to virtual address conversion.

ADR, [* J address specifies the location of the address.
to be converted.

If the user has been swapped in between issuing a BlIST CAL
and· issuing a MAP CAL, the address returned from the MAP
CAL is invalid. The user has not been swapped if J:NRS in
the JIT is equal to SWAPCT in the DDCB. The user may
reduce the chances of being swapped through the use of
M:LOCK.

Calls generated by the M:MAP procedure have the form

CALl,6 fpt

wh~re fpt points to word 0 of the FPT shown below.

where f) indicates virtual to physical address conversion
(f1 =0) or physical to virtual address conversion (f1 = 1).

If the user's privilege level is not a~ least AO, the return is
to CAL+1 with CCl set.

OBTAIN MODEL NUMBERS AND TYPE MIEMOIICS

M:DMOD# The M:DMOO* procedure obtains the con­
troller model number, the device model number, the type
mnemonic ossociated with a given device address, and
specific information concerning the device (i. e., device
availabil ity, device partitioned, controller partitioned,
and DIAG key-in has been performed).

M :DMOD' [*]device address

where device address has the form ndd in which n specifies
the lOP unit address (the number associated with the lOP
letter; see Table 8-2 in Appendix B) and dd specifies the
device number (see Table·B-3 in Appendix B).

120 Abnormal Codes and Messoges/DOCB

EXample:

M:DMODi X'20F'

The procedure V{frifies that such 00 address exists. If no such
c;fe'/i<:e address exists, CC 1 is set to one. However, if the
device address is valid, CCl is set to zero and the. following

.. gcot!ral registers are set:

R8 contains the device model number in hoxadecimal
(e.g., X'OOOO71221).

R9 contains the controller model number in hexa-
decimal (~:g., X'OOO07120').

Rl0 contains the type mnemonic in EBCDIC and
right-iustified (e.g., X'OOOOC3D9' for CR), and
special information flags formatted as follows:

bit 0 = 1 device is currently busy with an-
other user. .

bit 1 = 1

bit 2 = 1

device is partitioned.

device's controller is partitioned.

bit 3 = 1 DIAG key-in has been made by
the operator.

bit 4 = 1 sub-channel 2 (alternate path)
part i t ioned.

bit 5 = 1 sub-channel 1 (primary path)
partitioned.

In either case, the return is to CAL+1.

Calls generated by the M:DMOO' procedure have the form

CAl1,6 fpt

where fpt points .to word 0 of the FPT shown below.

M:DMODX The M:DMODX procedure obtains the
same madel numbers ond type mnemonics as the M:OMOD'
procedure. The format for both procedures is the same:

M:DMODX [*] device address

All M:OMOO' information is applicable to M:DMODX,
except for word 1 of the FPT. Word 1 of the' FPT for
M:DMODX is shown below.

word 1

o 1 2 3 4

If F2 is set, word 0 contains a OCT index
(in positions 8-31).

31

90 31 136-2(9/18)

If F2 i~ 0, word 0 ~orita;n~ a deviceod<ire~s
(some as M:DMODI~.

If C1n invalid OCT index (DCTX) ispass-ed I the
M:DMOD' error conditions apply to' M:DMOPX:

ABNORMAL CODES AND MESSAGES

The codes and messages for abnor~al cond it ions that coo
occur when using the on-linediaghosticsfacilitiesare listed
in Tobie 44. The abnormal code (bits 0-7) and subcode

90 31 138-2(9/78)

(bits 8-14) cre returnt'd in USflr'S r"gister'S R301d the ocidr~~
,of the'. procedure pius one word (CAL+lj is returned in U$3r

1
i

regjS't~r:SRli'(Th,e'me,>sagt.'lS reside in fhe-system error me~-
age file, ERRMSO.') ,

DOCB
The format for the DOCS is given in Figure 16. Following
each format, the parameter fields of the DOCB are described
tn alphabetical order by their mnemonic. All referenced
addresses have word rS50lution.

Abnormal Codes and Messoges/DDCB 120.1

(This page intentionally left blank.)

120.2 Abnormal Codes and Messages/DDCB 90 31 13S-2(9/78)

Abnormal
Code Subcode

09 00

,

09 01

09 02

09 03

09 04

09 05

09 06

09 07

09 08

09 09

09 OA

09 os

09 OC

09 00

09 OE

09 OF

09 10

09 11

Tab!e 44. On-Line Dlagnosfics Abnormal MessQges

Meaning of Code
-,

A diagnostic' close is attempting to return a nonpottitioned', .~~vtce or a device ~ithin a parti-
tioned controller. - , -

The device referenced in the DOCS is a none)dstent device •.

The device referenced in the DOCS is currentl y in use.

The device referenced in the DOCS is currently in use by a symbiont.

The DOCS does not contain a command list.

The command I ist was inval idated by a swap.

There are more than 12 I/O command doublewords (lOCOs).

The I/O command list is invalid due to either invalid flags, an invalid TIC address, an invalid
user-specified command list address, or insufficient room in the DOCS for the command list.

An error was found during the SLIST CAL. Either an invalid page was found during physical-to­
virtual or virtual-to-physical address conversion, the status address is in error, or the byte count
is illegal in the lOCO. '. .

A buffer crosses a page boundary.

The user's 10 does not match the 10 specified on the last operator OIAG key-in, or the user
privilege level was less than AO.

The amount of available core is not sufficient to allow the diagnostic program to lock itself
in core.

The requested controller is not partitioned.

The device specifically requested on an open is not partitioned.

A MAP CAL error occurred due to an invalid page number during a physical-to-virtual or
virtual-to-physical address conversion. '

Monitor buffer space (MPOOL) is unavailable for processing the command list.

A hand-coded TIO, TOV, or HIO type FPT does not have f3, f4, or f5 set to one when
f2 is one.

A CHAN option on an M:OOPEN to a device type or operational label is illegal.

DOCS 121

~q' , !
W f"'~"

';;,: F r \1:t ~ c A 9 t
t1:"l. ~D 1.. -fL,--
-"

9 lO' 1'1' 12 13

DEVor OPLB

24 25 26 27 28 29 30 31

-------0 aUF

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Word 3

TIMEOUT ERA

o 123 22 23 28 29 30 31

ABA

o 30 31

o 0 ----0

o 31

FlP

19 20 21 22 23 24 25 26 27 28 29 30 31

Word 7

Figure 16. Format of the DDeB

122 DOCB

(may not be used)

cos or CIS

DEVICE

16 17 18 19 20 21 22 23 24 25 26 27 30 31

Word 15 .
TAB 1

o 1 2 314 5 6 718 9 10 11112131415116 17 18 1912021222312425262712829 30 31

Figure 16. Format of the DOCS (cont.)

DOCS 123

FIELD

ABA

ASN

BUF

CHAN

CIS

SWAPCT

21 22 23 24 25 26 27 28 29 30 31

Word 21

PRJ

o 1 234

Words 22 -n are used for variable length parameters

Figure 16. Format of the DDCB (cont.)

DESCRIPTION

Contains the address of the user's routine that will handle abnormal- conditions resulting from
insufficient or confl icting information.

Indicates the assignment type currently in effect for the DCB (0 = null,' 1 = file, 2 = Xerox
labeled tape, 3 = device, X'A' = ANS labeled tape).

Contains the address of a monitor MPOOL buffer used when processing the user IS command list.

Is the controller reservation flag (O = no, 1 = yes).

Contains the relative position of the serial number (in the SN list) of the magnetic tape reel
used for current file input.

124 DDCS

WORD

4

o

2

11

11

FIELD

CLIST

ClSZ

cos

DEV

OEVF

DEVICE

DIAG

DRC

ERA

FCD

FCI

FlP

FUN

KBUF

OPlB

PRJ

STA

SWAPCT

TABl

TIMEOUT

TOlF

TOP

TTL

DESCRIPTION
~ . .

Contains-th~.v1rt!-,4J..aqdres~ of th~' physic~t command I ist in ,the DOCB ..
," • r ~ .. ~ • , ,"

Contains the 'nu~f;er~iwo;dsi~ !l1e physic~1 command'li~t in the DDCB.

Contains the rel~ti~e positio.n' of the serial number {in th~ SN list)· f?f thernagnetic tape r~el .
used for current file outpJt. " .'

Contains the OCT ind~x of the devic~ assigned to t~ DCB. DEV is only meaningful~ if OEVF
is set to one. . .

Indicates whether the DOCB is a~signed to a device or an operational label (0 = operational
label, 1 = device).

Contains the EBCDIC name specified on the DEVICE option in the M:OOPEN call.

Indicates diagnostic device DDCB.

Is the format control flag and indicates whether (DRC == 0) or not (DRC == 1) the monitor is to do
special formatting of records on read or write operations. ORC is always set to 1 in a DOCS.

Contains the address of the user's routine that will handle error conditions resulting from
insuffic.~~t or confl icting information.

IndicateS whether the ODCB is opened or closed (0 = closed, 1 = opened).

Indicates whether the DOCB has ever been closed. The flag is set when the DOCB is first closed,
and then is never reset (0 = DDCB has never been closed; 1 == DDCB has been previously opened
and closed).

"'CQl)tains the address of the variable length parameters in the DDCB (called the file list-pointer).

Contai~s the device mode function (0 = null, 1 =IN, 2=OUT, 3=INandOUT, 4=INOUT, 8=OUTIN).

Contains the virtual address of the user's command list.

Contains the OPLB table index of the operational label assigned to the ODCB. OPlB is only
mean ingful if DEVF equals 0.'

Specifies priority of I/O request.

Contains address of user data area used to>ie~m I/O status.

Contains user's swap count at the time a diagnostic CAL is issued.

Contains the physical doubleword address of the command list in the DOCB.

Contains the I/O timeout value from the M:BLIST CAL.

If 1, bits 16-31 of DOCS are TEXT OPLABEl. If 0, DEVF is meaningful.

If 1, opened to a device type or oplabel. Otherwise, set to O.

Specifies the length of the DOCS in words.

TYPE Contains the device type code assigned to the DOCB. This field is set whether the DOCS is assigned
directly to a device or indirectly through an operational label.

WAT Is the wait flag and indicates whether (WAT == 1) or not (WAT = O) WAIT was specified for the I/O.
WAr is always set to 1 in a OOCB.

21

4

11

12

5

o

3

o

o

6

1

10

21

14

19

15

3

o

ODCB 125

Real-time processing involves reacting to external events,
(including cl6c~ pulses) within microseconds. Selected ex­
ternal events are allowed to i-nterrupt th~ rea,l-time user's
program so that they can he processed' at ihe ti.:ne ·they
occur. After an interrupt hashe.en .pro.cessed, control may'
then return to the i nterrupt~~ pro:sram :or max." b~ d i rec ted
elsewhere. "; .' "" ':'. . ,

In CP-V real-time processing, there are three distinct types
of interrupts:

1. Real, hardware interrupts.

2. Multiple clock interval interrupts derived through soft­
ware from a single hardware clock interrupt.

3. User written pseudo-interrupts that are triggered by
software rather than by hardware. . This type of inter­
rupt is quite useful for interprogram communication
and synchronization. Pseudo-interrupts use interrupt
addresses X'lOOO' through X '7FFF'.

Note: Any interrupt connected by real-time procedures
must have a hardware priority below that of the I/o
interrupt. Note also that the swapper performs I/O
at a software priority\ of X'10'. (This would be a
consideration when ~pecifying a priority to be as­
sociated with certain real-time I/O requests; e.g.,

,M:IOEX.)

The counter-equals-zero interrupts (X'58' and
X'59') may be connected to a user program via
the M:CONNECT or M:GJOBCON procedures.
However, it is the user's responsibility to initialize
the corresponding counter pulse interrupts (X'52'
and X'53').

CP-V real-time provides services that a II ow a lIser program
to connect to and control interrupts, to request interruption
at specified clock intervals, and to lock itself into core so
that it will not be swapped out until it is ready to be
swapped ou t •

The following terms appear in the discussion of the real­
time serv ices:

Disarmed

When an interrupt is in the disarmed state I no signa I to that '
interrupt is admitted; that is, no record is retained of the
existence of the signal, nor is any program interrupt caused i

by it ot any time.

When an interrupt is in the armed state, it can accept and
remember an interrupt signal. The receipt of such a signal
advances the interrupt to the waiting state.

126 Real-Time Procedures

Waiting

When an interrupt in the armed state receives an interrupt sig­
nal, it advances to the waiting state "and remains in the waiting
state until it is allowed to advance to the active state.

Enabled

When an interrupt is in the enabled state, it is allowed to
move to the active state when the interrupt signal isreceived
provided that it is also in the armed stote. If the interrupt
is already in the waiting state, it moves to the active state
when it becomes enabled, provided that no higher priority
interrupt is currently active.

Disabled

An interrupt can undergo all state changes except that of
moving from the waiting'to the active state when it is in the
disabled state.

When an interrupt meets all of the conditions necessary to
permit it to move from the waiting state to the active state,
it is permitted to do so by being acknowledged by the c,om­
puter, which then executes the contents of the assigned in-:­
terrupt locat ion as the next instruction.

Cleared

When an interrupt is changed from the active state to the
cleared state, the interrupt states are reset so that the in­
terrupt can be recognized again and the priority is reset to
that of the job that was running when the interrupt occurred.

Interrupt Control Blocks (lCBs)

Areas of memory set aside for use by the monitor interrupt
processing routines. ICBs are established by SYSGEN.

Interrupt label

The two-character name of an interrupt. Interrupt labels
are defined at SYSGEN.

INTERRUPT CONNECTION I AND CONTROL SERVICES

CP-V real-time provides services that connect interrupts to
mapped programs, control the state of interrupts (e.g., trig­
ger, arm, enable, disable), clear interrupts either at time
of occurrence or upon completion of processing, and discon­
nect interrupts that are no longer required. Most of these
services are provided through procedures which, except
where noted, reside in

SYSTEM RTPROCS

and require reaf-time privilege (EO or higher).

CONNECT UHfRRUPl TO GHOST filE

M:GJOBCON The GJQSCON. roul'inc associates an
interrupt with a load module such that if the interrupt oc­
curs, the designated load module will be put into execu­
tion as a ghost job. If the ghost job is already acti:'Po as
the resul t of a previous interrupt, the interrupt wi, I be
ignored. An interrupt occurrifl'g whi.le the ghost is ~_")!eep
(M:WAIT) causes a woke-up event. Once connected to the
interrupt, the designated. ghost job behaves .as a suliask of
the program that issued the M:GJOBCON. If the program
exits or aborts, the ghost job is disconnected from the
interrupt and (if running) is aborted.

The M:GJOBCON procedure call has the form

M.GJOBCON (INT r*J{interrupt}> ----......
. , 'intlbl' , I

L(lMN, 'load module')[. (ACN, 'occount'l]:J

L , (PRIO, (*]priority)]

where

INT, [*J interrupt specifies an interrupt address.

INT, [*J'intlbl' specifies an interrupt label. If
"indirect addressing is used, the label must be in
EBCDIC format, right-justified in the word, and
preceded by blanks.

lMN, 'load module' specifies the name of the load
module to be placed in execution when the inter­
rupt occurs. This will be the name of the re­
sulting ghost job. The name must be seven char­
acters or less in length.

ACN, 'account' specifies the account of the load
module and consequent running account for the
ghost job. The default is the :SYS account.

PRIO, [*]priority specifies the execution priority
for the ghost job. The default is as follows: if
'intlbl' was specified (via the INT keyword), the
default is the SYSGEN-defined execution prior­
ity associated within the interrupt label; if an in­
terrupt address was specified (via the INT key­
word) and the interrupt is a real interrupt, the
default is n-X'4F' where n is the value of the
interrupt address (e. g., programs attached to in­
terrupt level X'60' would have a default execu­
tion priority of X'lll); ifan interrupt address was
specified (via the INT keyword) and the interrupt
is a pseudo interrupt, the default is the SYSGEN­
defined default execution priority for ghost jobs.

Calls generated by the M:GJOBCON procedure have
the form

CAll,S fpt

where fpt points to word 0 of the FPT shown below.

90 31 13B-2(9/18}

word 0

[[.. ::">".' . .

word. 1

words 2 and 3

load module nome in TEXTC
1""'-------- ---- --- ---

format (~7 characters)
o I a 314 S 6 118 9 10 '1112 13 " '~ll0 1711 19120 2' 22 2J12< 1) 26 171282'>)() 31

words 4 and 5 (Pl)

Account nome in TEXT

format ($8 characters)
2'> 30 31

word 6 (P2)

Pr~ority

Condition code settings resulting from on M:GJOBCON
CAL are:

CCl -

CC2 -

CC3 -

CC4 -

set if the user does not have real-time
privilege.

set if no interrupt control blocks are
available.

set if the interrupt specified is already
connected.

set if the ghost already exists. This
M:GJOBCON procedure call is ignored.

CONNECT USER PROGRAM TO INTERRUPT

M:CONNECT Any mapped user program with real-time
privilege may use this service to establ ish a connection to
an interrupt such that the user program will be entered at
the specified address when the interrupt occurs. Interrupts
connected in this way report events to the CP-V execution
scheduler and therefore permit the entered program to use
all monitor services. The connected interrupt will be armed
and enabled or disabled as specified by the user.

Interrupt Connection and Control Services 127

'The M:CO NNECT proccdu, e cal ~ ha,s the form,

where

INT, (*jinterrupt specifies on interrupt address.

INT, :*J'intlbl' specifies on interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right--justified in the word, and
preceded by blanks.

E NT RY I ~*]address specifies the address at which
entry is to be mode into the user program.

PRIO, [*]priority specifies the execution priority
for this interrupt. The default is as follows: if
'intlbl' was specified (via the INT keyword), the
default is the SYSGEN-defined execution priority
associated with the interrupt label; if on interrupt
address was specified (via the INT keyword) and
the interrupt is a real interrupt, the default is
n-X'4F' where n is the value of the interrupt
address; if on interrupt address was specified (via
the INT keyword) and the interrupt is a pseudo
interrupt, the default is the SYSGEN-defined
default execution priority for either on-line,
batch, or ghost jobs, depending on the mode
in which the job is being executed.

CLEAR specifies that the interrupt is to be cleared
immediately upon occurrence and reported to the
scheduler. The default is to leave the interrupt
active.

MAS TER specifies that the user is to be given con-
trol in the master mode. The default is the slave
mode.

DISABLE specifies that the interrupt is to be con-
nected, armed, and disabled. The default is to
arm and enable.

Calls generated by the M:CONNECT procedure have the
form

CAL 1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

128 Interrupt Connection and Control Servtce~

word 2

word 3 (P t)

where

M=1 specifies MASTER mode.

C=1 specifies CLEAR.

D=l specifies DISABLE.

condition code settings resulting from on M:CONNECT
CAL are:

CCI -

CC2 -

CC3 -

set if the user does not have real-time
privilege.

set if no interrupt control blocks are avail­
able. (Interrupt control blocks oreestob­
lished at SYSGEN.)

set if the interrupt specified is already
connected.

The environment existing for the real-time program at the
time of the interrupt occurrence is saved in the user's TCB
before entering the specified interrupt routine. The TCB is
ide~tical to the one shown in Figure 5 except that the lost
word contains the interrupt location rather thqn a trap
location.

DISCONNECT USER PROGRAM OR GHOST JOB
FROM INTERRUPT

M:DISCONHECT The DISCONNECT ~outine releos.es
the specified interrupt if it is associated with the current
user. If honored, the M:DISCONNECT procedure disarms
the specified interrupt and releases the associated interrupt
control block.

The M:DISCONNECT procedure call has the form

M .. DISCONNECT (INT L*I{i~terruPt})
, .J 'cntlbl'

where

I NT, (*] interrupt spec ifies the interrupt address.

INT, [*]'intlbl' specifies the interrupt label. If in-
direct addressi ng is used, the label must be in

EBCDIC format, right-justified in the word,
and preceded by blanks.

Calls generated by ,the M:DISeONNECT procedure have
the form -

CAL 1,5 fpt

where fpt points to the FPT shown below.

Condition code settings resulting from on M:DISCONNECT
CAL are:

eCl - set if the user does not have real-time
privilege.

CC2 - set if the interrupt specified is not associ­
ated with the current user.

CC3 - set if the specified interrupt is currently
active.

CONTROL AN INTERRUPT

M:INTCON This service permits a program with real­
time privilege to control the states of interrupts. Interrupts
may be armed, disarmed, enabled, disabled, or triggered.
If the designated interrupt is a pseudo-interrupt, the action
specified does not affect any real hardware interrupt but
is instead recorded in the associated interrupt control block.
The use of this service does not require that the user
issuing the M:INTCON request be connected to the desig­
nated interrupt, thus permitting inter-user interrupts.

The M:INTCON procedure call has the form

ARM,ENABlE
ARM, DISABLE

M:INTCON (INT [*J{interrupt}> DISARM
, 'intlbl ' , ENABLE

DISABLE
TRIGGER

where

INT, [*Jinterrupt specifies the interrupt address.

INT, (*]'inttbl' specifies an interrupt label. If
indirect addressing is uSE:d, the label must be in
EBCDIC format, right-justified in the word, and
preceded by blanks.

ARM, ENABLE specifies that the interrupt is to be
armed and enabled.

ARM, DISABLE specifies that the interrupt is to be
armed and disabled.

DISARM $pecifies that thei'nferlllpt is to he disarmed.

ENABLE specifies that the interruptistobeenabled.

OJ-SABLE : "~ecified that the'interru'pt is to be disobl ed.

> • TRlG'QER specifies that the interrupt is to be
trigger:fld.

Calls generated by the M:INTCON procedure have the
form

CAll,S fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

where the 3-bit code has the following meanings:

001 - DISARM

010 - ARM and ENABLE

011 - ARM and DISABLE

100 - ENABLE

101 - DISABLE

111 - TRIGGER

condition code settings resulting from an M:INTCON CAL
are:

cel -

CC2 -

set if the user does not have recl-time
privilege.

set if the designated interrupt is not cen­
trally connected (i. e. I no M:CONNECT
or M:GJOBCON has been performed on
the interrupt). The requested operation is
not performed in this case.

GENERAL INTERRUPT IIIHIIIT

M:IHHIBIT This service permits a program with real­
time privilege to prevent itself from being interrupted by
any higher priority real-time task. Note that this is a soft­
ware (not hardware) inhibit and appl ies to both reol and
pseudo interrupts.

Interropt Connection and Control Servicos 129

The M:INH!BIT pf.qcedure .co!! has the form:

" {ON }
M:1NHIBIl, fOFF]

where

ON specifies that the program is notto be inte,rfupted •.

OFF specifies that the program may be interrupted
and is the default.

Coils generated by the M:INHIBIT procedure have the
form

CAL 1,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

X'23'

word 1

where f -specifies OFF if 0; or ON if 1.

Condition code sett.ings re'sulting from an M:INHIBIT CAL
are:

CC 1 - set if user does not have real-time privilege.

RETURN FROM INTERRUPT PROCESSING

M:INTRTN This service allows a mapped, scheduled
program entered as the result of a centrally connected in­
terrupt or elapsed clock interval to return to the point of
interruption. The actual return is to the environment that
existed for this program or user when the interrupt occurred
even if this user was not in control when the interrupt oc­
curred. The environment that is restored was saved in the
user's TeB at the time of interrupt entry.

The M;INTRTN procedure call has the form

[{

LEAVE]]
M.INTRTN ARM[,ENA8LE]

. ARM, DISABLE
DISARM

where

130

LEAVE specifies that the interrupt is to be left in
its current state. LEAVE is the default for this
procedure.

Interrupt Connection and Control Servicei

ARMGENABLE] specifie~thot the interrupt is to be
left o);med and enabl~d .. (It is not necessary to
sp.ecify ENABLE.)

ARM, PISAB"LE specifies thaJ the interrupt is to be
, .Uift armed and disabled. '(It is necessary to specify
'''DISABLE.)

DISARM specifies that the interrupt is to be left
disarmed. If DISARM is specified when exiting
a clock-processing routine (see M:ClOCK below),
the clock ICB is released as though the user hod
issued an M:ClOCK coli with the CANCEL
option.

The ARM, ENABLE ond ARM,DISABLE options have no
effect when exiting a clock-processing routine.

Calls generated by the M:INTRTN procedure have the
form:

CAL 1,9 X'OA'

where the CAL instruction is as follows:

where the 2-bit code has the fol lowing meanings:

00 - LEAVE

01 - DISARM

10 - ARM and ENABLE

11 - ARM and DISABLE

When an error condition occurs, the user is aborted with an
error code of either A301 or 8802 (see Appendix B of the
CP-V /BP Reference M:muol, 90 17 6.4).

nUEUEFORINT£RRUPT

M:QFI This service permits the user to suspend execu­
tion while awaiting interrupts or elapsed clock intervals as­
signed a priority higher than the current execution priority.
If there are no interrupts connected for this user that satisfy
this condition, the user is aborted with a code of 88 and 0

subcode of 01.

The M:QFI procedure call has the form

M:QFI

Calls generated by the M:QFI procedure have the form

CAL 1,5 fpt

where fpt points to the FPT shown below.

--------------------------0

90 31 138-2(9/18)

'ITAi" IIIITEP-KUPT STATUS

M:1NTSTAT . The service permits any USflt to qU'8ry the
~tatu, of any real' or pseu.do interrupt locatjon •. 'rhe format
of the M:INTSTAT prodedure call i~

M:INTSTAT (INT [*,{interrupt}'
, J 'intlbl'

where

I NT, [*] interrupt specifies an interrupt address.

INT, [*]'intlbl' specifies an interrupt label. If
indirect addressing is used, the label must be in
EBCDIC format, right-justified in the word, and
preceded by blanks.

The following word of information is returned to the user in
general register 8:

where

STAT indicates the status of the task associated
with the interrupt location:

STAT

X'40'

X'20'

X'10'

X'Ol'

Meaning

Task is active.

Task is asleeporqueuedfor interrupt.

Task is waiting for i/o completion.

Task is blocked and waiting for a
resource.

Specified interrupt is not currently
associated with any user (i. e.,
inactive).

USER is the user number of the user program which
issued the M:CONNECT or M:GJOBCON.

GJ08' is the user number of the ghost job (if it is
active) which will be entered upon the occur­
rence of the interrupt. If the ghost job is not
active, GJOB' contains zero.

T specifies thot the interrupt has been triggered,

E

if set to one.

specifies that the interrupt is enabled, if set to
one.

A specifies that the interrupt is armed, if set to
one.

90 31 138-2(9/78)

<;cills geoeroted by the M:1NT5TAT p(Oc.~dure,hovethe form

cAll,5 fpt
-, i .

~her.e Jptpointst9'~he FPTsh~wn below. '

Condition code settings resulting from an M:INTSTAT CAL
are:

CC2 - set if the specified interrupt is not currently
associated with any user (i. e., inactive).
(The STAT field of general register 8 is set
to 01.)

LOCK IN CORE SERVICE

M:HOLD Many real-time applications require that a
program be held in core while various forms of special I/O
occur. Since the CP-V scheduler will swap users as, con­
ditions require in order to keep as many executable users
in core as possible, it is necessary for those real-time pro­
grams which require extended core residency to identify
themselves via the M:HOLD service.

The format of the M:H OLD procedure call is

. M :HOLD {g~} [, PURGE)

where ,

ON specifies that swapping is to be prevented for
this user (I. e., the user is to be locked in core).

OFF releases the hold.

PURGE specifies that the user's pages should not be
released if the user exits (or aborts) while locked
in core.

Condition code settings resulting from an M:HOLD call are:

CCl - set if user does not hove real-time privifege.

CC2 - set if, at this time, there is not enough
room left in core to hold the routine that
allocates new disk space or the routine
that communicates with the symbiont
ghost.

Restrictions:

1. The user must have real-time privilege.

2. All memory management services which increase this
user:.s size and the M:lINK and M:lDTRC services will
nor'·: ' ..,1 lowed once the user is held in core.

Lock in Core Service 131

thl.."noL;;e .," ,>'A.HOLD, II-'~trictions mu~t be
on th~ iJ:.e (.. f c,;doin monito' ser'~ice)ti>lat re- '

qu·i'((!.,ucc~$stb non-resider..-t ,moniIQ(1~_":.J{i;-,e~ or
(e,>ouf~Ces~ !~ is po.\sjol,~ for one o~ more real-timf"
tJ~e'~ i(Y'dcq4i"eq!,iq k~ck·enoligh core to pr~vent .
(ertoi" sy·st e ..:rl ghosts' (s.peciH~C:olly 1. ALtOCAT and/or
RB!3l .. n from being swopped intoc'ore.Thi5 maY,occur
even if one Of more of the real-time u~ersdid not
receive the warning provide,d by CC2. If this does
OCcur I any request by one of these real-time tosks for
any monitor service that requires action by the'
blocked system ghost causes the reol-time task to be
aborted with on error code of B807. M:OPEN and
M:CLOSE to disk files are prohibited, resulting in a
B8-03 error.

Because of the extremely adverse effects that improper use
of the M:HOlD service can have on the integrity and
efficiency of the CP-V system, it is suggested that use of
the M:HOlD ')ervice be restricted to those real-time pro­
grams that absolutely must not be swapped during special
I/o; such programs should be kept as small as is practical,
and shoufd refrain from issuing any standard file manage­
ment or symbiont-stream I/O CAls while on M:HOlD is in
effect.

It is important to note that any program using M:HOlD
should toke exit control to cover abort conditions because
if on abort or exit occurs while the user is locked in mem­
ory, the memory involved will not be released if PURGE
was specified.,

Calls generated by the M:HOLD procedure have the form

CAll, 5 fpt

where fpt points to the FPT shown below.

X'2S' 0-----------------------------

where

f 1 specifies ON if set to 0 or OFF if set to 1.

f2 specifies PURGE if set to 1.

CLOCK SERVICE

M:ClOCK This service permits a user with a privilege
level of 80 or higher to request entry at a specified address
when a specified time interval has elapsed. The format of
the M:CLOCK procedure call is:

tCL{~~~C::~!-R~, [*]a:dreu), I
- (IN fERVAl, [*)units)[, (PRIO, [*]priority)],

C [, ONESHOTJL IMS TER]}

where

132

ENTRY, [*]address specifies the address at which
the user is to be given control when the specified
interval has expired. The environment existing

Clock Service/Device Preemption Services

for th~,u!ser atthe'ti~/of the interval expiration
is saved in. t~e us~rls .. TC,.B'as described under
M:CO!"lNEtt.. . . '

CANCEt. : cous:~s o'nyo~lstanding M :CLOC K requests
'. for the' spe~Hied entrya~dress' to be canceled.

INTERVAL; (*]units specifies the time interval in
two-millisecond units.

PRIO, [*]priority permits users with real-time pri-
vilege to specify the software priority. This
option is ignored if the user does not have real­
time privilege.

ONESHOT cuases the M:CLOCK request to be
automatically canceled after one occurrence. If
ONESHOT is not specified, the interval timing is
to be automatically repeated unti I CANCELed.

Iv\ASTER specifies that the user will be given con-
trol in the MASTER mode. (This is only honored
if the user has real-time privilege.) The default
is the SLAVE mode.

Calls generated by the M:ClOCK procedure have the form

CAll ,5 fpt

where fpt points to word 0 of the F~T shown below.

word 0

word 1

word 2 (Pl)

word 3 (P2)

where

M specifies MASTER mod~_ if set to 1.

o specifies ONESHOT if set to 1.

C specifies CANCEL if set to 1.

Condition code settings resulting from an M:ClOCK CAL
are:

eCl - set if no interrupt control blocks are
available.

90 31 13B-2(9/78)

CC2 - set if CANCfl!'w~s specifitld ond either
(1) no inte!fuptcont,rol block, is associated
with the user·s entry qddre~s, or (2) the
interrupt. cnntrol block' a's,sociated with the
user's entry address is c;urrently active.

CC3 - set if use,r .does not have a privilege level
of at least 80.

90 31 138-2(9/78)

. .

, DEVICE ~'M£MfTO~ STdWftES'

' .. £UIPT IEVtel

.. :5TOP;0 Certain reat-time appl ica.tions requi re that
there 'be direct·contf'o~ over the 1/0 aSlOCiated with a par­
ticular devic'e and that there be no contention for a part;­
cular device during certain critical proceDing periods. Thh
includes the ability to request I/O end action off of the
I/O interrupt associated with the I/O operation.

Clock Service/Device Preemption Services 132.1

(This page intentionally left blank.)

132.2 Clock Servi ce/Device Preemption Servi.ces 90 31 13B-2{9/78)

The real-time user may request that a spedfic device be
preempted from use by any user other thi;m a real-time user
doing direct I/o to the device vitfthe M:STOPIO service.
The following types of devices m..a~ not_ be preempted.

.... '
Teletypes (i.e., Operator's Console)

coe Devices

,Public RADs

Public Disk Packs

The format of the M:STOPIO procedure call is

{
(DCB, [*]dcb adr) } [[*' :l

M:STOPIO ,(DEV, [*]X'device adr') ,(EA, Jvadr)J

where

DCB, [*]dcb adr specifies that the device associated
with this currently open device-type DCB is to be
preempted from use by any other user. Only the
user requesting the STOPIO may perform subsequent
I/O to the device.

Dev, [*]X 'device adr' specifies which device is to
be preempted from use by all but this user and is
one of the following:

ndd ... a ,12-bit physical address as used by
Sigma hard.ware.

cudd - a 14-bit physical address as used by
Xerox 560 hardware (cluster/unit/
device).

EA, [*]vadr is the virtual address of a routine that is
to handle any I/O interrupts from thedevice being
preempted. This address is converted to a physical
address and stored in the OCT tables. Therefore
the user, prior to issuing the M:STOPIO request,
must have locked himself in core via the M:HOLD
CAL. This routine is entered master mode, un­
mapped, via a BAL on register 11 with the I/O
interrupt active (high). Register 1 contains the
AIO status of the interrupting device; register 2
contains the right-iustifiedaddress of the interrupt­
ing device; byte 0 of register 3 contains the con­
dition codes as set by the AIO instruction; regis­
ters 4and 5 contain the TIO status of the interrupt­
ing device with byte 0 of register 4containing the
condition codes as set by the TIO instruction;
register 6 contains the physical address of the
(user's) end-action-receiving routine; and register 7
contains the OCT index of the interrupting device.
No monitor services may be requested by the re­
ceiving routine. All registers may be considered
volatile except register 11 through which return
to the monitor must be made.

The DeB form of the M:STOPIO procedure call should be
used wheneverthe user depends upon the operator to mount

removable volumes on private spindles or tape drives. The
DEVform should he used whe'never the user. wants a non­
~tanda(d device orasy';'biont-type d~v.ice (e~ g.', 'l:P, CRt
'CP, RBT). Use of the DEV'form.to preemptOhyother device
fyp~'results!n an abnormal return (see the condition code
·seitings ~el~w).; " , '
I '. ' " ",
I~alls g~ne'rated:.bY .. th~ M.:STOPIO p~9cedure have the form

~AL1,5 fpt

where fpt points 'to ,word 0 of the following FPT.

word 2

where

specifies DEV if 0 or DeB if 1.

indicates that EA was not specified if 0 or that
EA was specified if 1.

The return from the procedure call is to CAL+l w!th the fol­
lowing possible condition code settings:-

I 234

o 0 0 0 device successfully preempted.

o 0 0 1 user doesn't have real-time privileges; or the
physical EA address is greater than 128K
(Xerox 560 only).

o 0 1 0 requested device is not preemptable (i. e., a
public pack or RAD), is already preempted by
another user, the specified DCB is not:opened
properly, or there was an illegal use of the DEV
form. '

o 1 0 0 unknown device address; request ignored.

1 0 0 0 requested device was associated with a sus­
pended symbiont; reques't isjnored.

Should the application require that the multi-device con­
troller {associated with the device to be preempted)also be
preempted, the SYSCON processor should be used. This
would imply that the application cannot tolerate any con­
tention for either the particular device or the mul ti-device
controller associated with that device (tape drive or private
disk p<!Ick). In the case of a disk pack controll er, the
spindles associated with that controller must have been de­
signated as private.

Device Preemption Services : 133

M:STAHTIO Anyprecrnpted· I/o device may be returned
to the syslem via the M:STARTIO service. '

The format of the M:STARTIO procedure caLi is

{
(DCB, (;:]dcb ~'dr) .' '.' . "}'

, M:STARTIO (DEV, [*]X'device adr') .

where dcb adr end device adr are as described under
M:STOPIO.

Calls generated by the M:STARTIO procedure have the form

CAll, 5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 1

where f specifies DEV if 0 or DCB if 1.

The return from the procedure call is to CAL+l with the fol­
lowing possiblecor'ldition code settings:

1 234

000 0

000 1

o 0 1 0

000

1 000

device successfully returned.

user doesn't have real-time privileges:

device wasn't preempted by this user, or the
specified DCB is not opened properly, or there
was an illegal use of th~ DEV form.

unknown device address; request ignored.

device was busy; request ignored.

DIRECT I/O SERVICES

IOEI SERVICES

The M:IOEX service is provided as one means of enabling
the real-time user to exercise direct control over I/O op­
erations without having to run in the master mode (see also
the M:EXU service). The only requirements are that the
device specified be preempted (either via the M:STOPIO
service or the SYSCON processor), and that an end-oction
routine be provided (either via M:STOPIO or M:IOEX). The
VO functions that can be controlled via M:IOEX are:

510 - Start input/output.

134. Direct Vo 'Servlces

HIC-· ,,; '.ilt inpu.t/ourpl.lt.

'TIO ~ Te~f input/output.

TDY - T.est device.

I M:IOEX (Sml.
call is

Tneformat of the M:laX (510) procedure

,... .{(DCB, [*]dcb adr) }
M:IOEX (DEV, (*]X'device adr') ,

L(SIO, (*)clist[,REL)G(EA, [*]vadr)]---,

Lll(TO,[*]va'ue) [APRI, [*Jprio»

where

DCB, [*Jdcb adr spec ifies that the I/O function is
to be performed for the device associated with the
currently open DCB addressed.

DEV, [*]X'device adr' specifies the device for wh ich
the I/O function is to be perfonned and is one of
the following:

ndd - a 12-bit physical address as used by
Sigma hardware.

cudd - a 14-bit physical address as used by
Xerox 560 hardware (cluster/unit/
device).

SI 0, [*]cI ist is the starting virtual address {double-
word bound} of the I/O command list to be initiated.
All buffer addresses within the command list itself
must be physical addresses. The channel program
must request a "Channel End Interrupt" {unless REL
has been specified, see below}; however, multiple
interrupts per I/O requests are pennitted (e.g.,
"Zero Byte Count InterruptI! and "Channel End
Interrupt").

REL specifies that the channel is to be released af-
ter issuing the 510. This would be used with
command lists which do not result in data transfer

. operations (e. g., seek orders, rewind orders, head­
positioning orders).

EA, [tr]vadr is as described under M:STOPiO; the
M:HOLD requirement applies .to M:IOEX also.

TO, [*]value is the number of 4.8 second intervals
allowed to elapse following the issuance of the 510
instruction before the EA address will be entered.
In this case,' the user's EA routine is entered master
mode, unmapped, via a BAL on register 11 with
registers 1 and 2 equal to zero. Register 7 contains
the DCT index and register 6 contains the physicai
address of the (user's) end-action-receiving routine.
Byte 0 of register 3 contains the condition codes as
set by the SIO instruction; registers 4 and 5 con­
tain the SIO status registers' information. No mon­
itor services may be requested by the receiving
routine. All registers may be considered volati Ie
except register 11 through which return to the mon"
itor must be made. A time-out val ue of zero

implies that no time-out facHityisdesired (default),
however the user's EA Ciddres~ .'wi!I('~~:·ay's~e en­
tered should an' SIO failure o'ccur (in this case
register 1 wi II be nonzero). ' <

PRI, [*lprio .is the priority at 'wh'i~h'to queu'e th~
request and is a value betweeo'O and X'FP. The
default is the value of the user's current execution
priority.

Table 45 summarizes the vadous possible register settings
for end-acti on routi nes.

Calls generated by the M:IOEX(SIO) procedure have
the form

CAll,5 fpt

where fpt points to word 0 of the FPT shown below.

word 0

word 3 Pl

',[10' " 0 End-eclian address J
01231" 5 6 7111 9 IO~15161]181yb:l21n231z425202]!lSZY30JI

where

f1 specifies DEV if 0 or DCB if 1.

f2 is set to 1 if REL was specified on SIO.

The return from the procedure call is to CAL+l with the fol­
lowing possible condition code settings:

1 234

o 000

000 1

o 0 1 0

I/O request successfully queued.

user doesn't have real-time privileges.

specified device doesn't exist or the specified
DCB is not opened properly.

o 1 0 0 EAwas not specified and the DeT tables do not
contain the address of an end-action receiver;
or the physical address EA is greater than 128K
(Xerox 560 only).

1 0 0 0 specified device is not pree'ni'pted, or has been
preempted by another. user.

Table 45. Register Settings for End-Action Routines'

Register Contents when Routine Entered
due to Interrupt

RO -
Rlt AIO status.

R2t Device address.

R3 AIO condition codes (byte 0).

R4and TIO status; byte 0 of R4 contains the
R5 condition codes from TIO.

R6 Physical address of EA routine.
'.,

R7 OCT index.

tR 1 and R2 indicate how the end-action routine was entered.

Contents when Routi ne Entered due to
Timeout or SIO Failure

0= timeout; Nonzero = SIO failure.

o

SIO condition codes (byte 0).

SIO status (if timeout). R4 contains the
doubleword address of the fail ing channel
program (if SIO failure).

Physical address of EA routine.

OCT index.

Direct t/O Servlcet :" :,.

M:UlEX HUG/TIO/TOY) The format of the M:IOEX
(HIO!nO!TDV) procedure call is

- DeB, * de adr' .'- -.' _.' , (r]- -- b' } _!HIO}-
M:IOEX {(DEV ,tJX'device adr')' 'ih~

wher~ dcb adr and device adr are. as described under
M:IOEX.

Calls generated by the M:IOEX (HIO/TIO/TOV) procedure
- have the form

CAL 1,5' fpt

where fpt points to word 0 of the following FPT.

word 0

word 1

where

code is:

o if TIO

1 if TOV

2 jf HIO

f specifies DEV if 0 or DCB if 1.

The return from the procedure call is to CAL + 1 with the
condition codes and registers set as if the user hod issued
the following instruction:

{
HIO}
TIO ,8
TOY

X'device address'

Since the condition codes cannot be used to communicate
abnormal conditions for any of the above three services,
any of the abnormal conditions indicated below will result
in a program abort (code B9, subcode as indicated). Such
aborts may be intercepted by the user via TRAP control
(M: TRAP procedure ca II specifyi ng CAL).

Subcode

01

02

Meaning

User doesn't have real-time privilege.

iSpecified device doesn't exist, is not pre­
empted by this user, or the specified DCB is
not opened properly.

EXECUTE PRIVILEGED if~STRUCTmN SHnm::E

M:EXU The M:EXU service is provided as another way
to enable the' real-time- user to execute I/o j'nstructions
and other privileged instructions without having to run in
th~ master mode (see also the M:IOEX Service). The only
requirement is that the instruction op code to be executed
be one of the following:

0E! Code Mneumonic

X'4C' SIO
X'40' TlO
X'4E' TOY
X'4F' HIO
X'6Ci RO
X'6D' WD

The SIO execution service is intended primarily for inter­
facing to devices not known to the operating system (DCT
tables) and which do not generate I/o interrupts (X'5C').
However, no validity checks are made and if the SIO will
result in an I/O interrupt, it is assumed that the user will
have provided an end-action receiver via the M:STOPIO
service.

For a complete discussion of the M:EXU service, see the
Cp-V/Sp Reference Manual, 90 1764.

ENTER MASTER MODE

M:MASTER The M:MASTER procedure allows«;J user with
sufficient privilege level (CO or higher or the MS privilege)
to operate in the master mexle (master-protected mexle if
running on a Sigma 9 or Xerox 560) with a write key of 1.
(This procedure resides in SYSTEM BPM.) The format of the
procedure coli is

M:MASTER

Calls generated by the M:MASTER procedure have the form

CAL 1,5 fpt

where fpt points to the FPT shown below.

If the caller's privilege level is not sufficient, return is to
CAL+l with CCl set.

ENTER SLAVE MODE

M:SLAYE The M:SLAVE procedure allows any master
(and master-protected) mode program to return to the slave
mode. (This procedure resi~es in SYSTEM BPM.) The for­
mat of the procedure call is

M:SLAVE

Colis generated by th~ M:SLAVE procedure have the form

CALl,5 fpt

PSECT DIRECTIVE

The Meta-Symbol PSECT directive specifies that the control
section which follow·s is to begin on a page boundary .. The
directive can be useful for controlling the placement ofl/o
buffers, dota, and end-oction-receiving routines which will
be accessed unmapped.·

VIRTUAUPHYSICAL ADDRESS CONVERSION

M:MAP The M:MAP procedure converts a specified
virtual address to a physical address or a specified physical
address to a virtual address. The converted address is stored
in general register 8. The M:MAP procedure call has the
form:

M:MAP{~:~}, (ADR, [*]address)'

where

VTP specifies virtual to physical address conversion.

PTV specifies physical to virtual address conversion.

ADR, .*]address specifies the location of the ad-
t dress to be converted.

M:MAP should be used with M:HOlD since the address
returned via M:MAP may not be valid if a swap occurs.

Calls generated by the M:MAP procedure have the form

CAl1,6 fpt

where fpt points to word 0 of the FPT.shown below.

word 0

word 1

where f indicates virtual to physical address conversion
(f ::: 0) or physical to virtual address conversion (f = 1).

If the user1s privilege level is not at least AO, the return is
to CAl+l with CCI set.

MISCELLANEOUS REAL· TIME SERVICES

The following is a set of services provided to master mode,
mapped or I.!nmapped real-time programs. These services

90 31 136-2{9/18)

ore provided via Meta-Symbol procedure ::eferencc·s that
result in SAL lirtkoges to monitorrouHnei (hence the master
mode requirement) .os ~pposed to CAL Llinkages. The rou­
tines entry points are REF~d os a ies'ul t o:f·the vario,-!s pro­
cedure cb~lls; : therefore. the progrom must be loaded with
reference to the MON"STj(·or J 1 files in order to satisfy
:these externa I references. All. user regi sters ore preserved
by pU$hing them'into TSTACK except as indicated for
specific servi ces.

GET OR FREE PHYSICAL PAGE

M:GPP The M:GPP procedure acquires a physical page
of memory. The procedure call hos the format

M:GPP

On return from the procedure, general register 3 contains
the physical page number of the newly allocated page of
memory or the value zero if none was available.

In order for a mopped user to reference a physical page
acquired by M:GPP, it is necessary to perform a Change
Virtual Map (M:CVM) specifying the physical address of
the page acquired by M:GPP and the virtual address into
which this page is to be mopped.

M:FPP The M:FPP procedure releases a physical page
of memory that was acquired by M:GPP. The· procedure
call has the format

M:FPP (*] page

where page specifies the physical page number of a page of
memory which is to be returned to the system.

It is the user1s responsibility to return any pages obtained via
M:GPP since the system keeps no record ofthis transaction.

.",nATE GHOST JOB

M:GJOB The M:GJOB procedure activates (or awakens)
a .program as a ghost job. The format of the procedure is

M:GJOB (LMN ,loc)[,(ACN, locm ,(PRI,(*]value)]{ ,status]

where

lMN,Ioc specifies the location containing the name
of the program to be activated (or awakened) as a
ghost job. The name must be in TEXTC format and
must not be greater than 7 characters in length. If
the nome is less than four characters, a word of
blanks (X I 40's) must immediately follow the name.

ACN,loe specifies the location containing the name
of the account in which the program exists. The
account name must be in TEXT format, laft-justified
with trailing blanks to occupy two WOlds. The
default is the :SYS account.

MilCellanllOUI Real -Time Services 137

,PRI,r"'jvullle >,-/ecifies !he'~xectJtiQn tJ,iorityt6 be

".ossoc.i9t~ wilh !h~ ghost job . The d .. :;fault priority'
~,II:-be that defined for ghod jobsal SYSGEN.

STATUS '5pedfie,;:thct all' ~~giUers wifl not be ,,'
saved, ana- ~n retum,ccr is s~t :if ,jt' was nof '
possible to ·jni tiohdhe :~p,edfie.d ghost'ot' this .~
time because'ei ther ghosr job 'to9'le -4rO,c,e was 'not,
available or user table_ space WGS' Ii,ot avaHoble .. ,
If STATUS is not specified;-no'ihfor,r,ot:ion is .
returned, but the registers are saved. CCland
CC3 are set if the specified ghost was currently
running. CC2 is set if the specified ghost job was
as'eep or queued for interrupt and was awakened.
Otherwise, the condition codes are all set to
zero.

The M:GJOB procedure returns to the colling program with
interrupts inhibited. The colling program should immedi­
ately clear the interrupt inhibits (with 0 ItWD 10 X'2711t
instruction) unless there is a pressing reason for continuing
to run in inhibited mode.

GET AND RELEASE DISK GRANULE

M:GDG The M:G,DG procedure dynamically acquires
a disk granule. The procedure has the format

M:GDG

The starting disk address of the acquired granule is returned
to the user in general register 8 in the following format

o , 2 ., ... ~ 6

The disk address shown above is in standard format for disk
addresses in CP-V, where:

. El is the extension bit necessary to represent 0

17-bit relative sector number on large capacity
disk pocks.

E2 is the extension bit necessary to represent an
l8-bit relative sector number.

DCTX is the OCT index for the device.

RSN is the 16-bit relative sector number.

If no granule is available, register 8 is set to zero.

To load or store a OCT index, use

where

is the register to be loaded (stored).

loe is a location, or optionally, 0 pointer to a

138

location, containing (destined to contain) the
disk address (see index below).

Miscellaneous Reol-Ttme Services'

, " i~ae.~ '~"'~ , 'i's, 0'''' i nd~~' ~ eg i ~ier' corita,i ni ng a word di 5-

" .<: -pracement which,' yjhen adcledto the address
. 9 j,ve'rr by, toc·,. y~::elds OJ. eHective address contoin-

. ~ "ina (~e'\tinec;h{)' ~orl'tQin) the disk address.
~. J,_: 10 •• ; _ - .' .,' ~, :

, t <»1 O~'d':~~, S!?fe::o rela ti ve sec tor numbel:

:.; ;:fm~~fA I, pddreg reg

where

oddreg is the odd numbered .egister to be loaded
or stored. (Regist~r 15 may not be specified.)

reg is any register except the one selected, for
'oddreg ' or 15.

Note that it is the user's responsibil ity to return ony gran­
ules obtained via M:GDG since the system keeps no record
of th is transact ion ..

fA:RDG The M:RDG procedure dynamically releases a
granule acquired via M:GDG. The procedure has the format

M:RDG (*)disk, address

where disk address is the starting address of the disk granule
to be returned to the system. It must have the same format
as described for M:GDG.

Under certain conditions, the monit~r may not. be oble to
accept a granule from the user at a particular time. In this
case, register 8 will contain a zero indicating that the user
must try egain. ' ,

REP,ORT USER EVENT

M:RUE . The M:RUE procedure reports an event on a
particular user (i.e., it simulates that the event took place
for the user). The format of the procedure call is

M:RUE (UN, (*Juser'), (EV, {=~:C~})

where

user' is the number of the user for whom the event
is to be reported. A user may determine his own
user number (for purposes of communicating this'
to other programs) by referencing the monitor cell
S:CUN (Current User Number) which is located in
page 0 of the monitor and is therefore available
to any user program loaded with MONSTK.

event is one of the following symbols signifying the
event to be reported on the user:

Symbol Event Resulting Action

E:CBK BREAK Control passes to the user at
the address specified via an
M:INT procedure call.

E:OFF log-off The user is deleted from the
system.

90 31 138-2(9/18)

Symbol Event Resulting AcJior'l

E:ERR Error , . Theu~i'is. ~.rror~d"oo~·de~· "
. leted;, frq~. the sYstem:..: .

E:WU Wake-up The spec ified US~(is'sc~t;c.tul ad .
for execution a~ re~nt~red' , ~
at the instructi~n~Ha~ing' .
the M:WAIT CALl. . , ;

E:UQA Unqueue
for
acces.s

The specified user isscheduled
for execution and· reentered
at the 'instruction following
the CALl which caused him
to be queued for access.

loc2 is a word location containing the value as-
sociated with the event symbol (defined by the
assembly SYSTEM).

Note: Care must be taken to ensure that the user for whom
the event is being reported is in the appropriate
state since an illegal current state/event combi­
nation 'willcause the system to crash. E:CBK,
E:OFF, and f:ERR may be safely reported on a user
at any point in time.

. ' CHECK INTERRUPT STATUS

M:CHKINT The M:CHKINT procedure. checks the status
of an interrupt. The· forniat of the procedure call is:

M:CHKINT (INT, [*]int)

where int is the location of a word containing the address
of the interrupt to be checked.

The following word of information will be returned to the
user in general register 8:

where

A specifies, if set, that the interrupt is armed.

E specifies, if set, that the int~rrupt is enabled.

T specifies, if set, that the interrupt has been
triggered and the interrupt processing routine has
not yet finished.

STAT indicates the status of the task associated
with the interrupt location as follows:

, STAT Meaning

X'BO' Task is active.

X'40' Task is asleep or queued for interrupt.

·STAT

X'20"·./ . :~f)skis 'waiting for I/O '~om.pl~fi9h.,

xqO'i Task is l:,locked, waiting f6rC(resource .

X'Ol' . Spe~ified interrupt is not,currently o$so-
dat~d wi,th any. us~r, '(Le., inactive).

US'ER ':" 'isthe.:inte~ricit·u~er table index for the user
. ~ur;entl'~ tl~~~~tedwit'h tft is interrupt.

GJOS# isthe'user number of the ghost job (if it is
active) which will be entered on the occurrence
of the interrupt. If the ghost job is not active,
GJOB# contains zero.'

1/0 SERVICES

The following services resultinBAL linkages to the monitor's
I/O Supervisor module (lOQ). They are separated into
three types:

1. I/O without a DCB where the user supplies the channel
program (M:EXCP). This should be used only where no
handler exists for a particular device or the user re­
quires unusual control over the device.

2. I/O without a DCB while 'not requiring the user to build
his own channel program (M:NEWQ).

3. I/o with parameters supplied ina pseudo DCB (M:QUE) •

Special problems exist when applying these techniques to
disk I/O. Unless the volume is being ~cmciged eptirely by
the user, the user must be aware of the physical location
of the data on the disk volume (or volumes). A random file
would be the most common way of allocating space on a
public or private volume for use byboth privileged and non­
privileged users. A random file is allocated contiguously
on a public or private volume when it is opened. By speci­
fying the FPARAM option on the M:OPEN call to an exist­
ing file, the user requests the monitor to pass the file attri­
bute (FIT table) parameters to a specified location (see the
DCB discussion in Appendix A of the CP-V /BP Reference
Iv\anual, 90 17 64). FDA (First Disk Address) is returned in
word one of the X'OC' - coded FIT entry. File size (in
granules) is given in word one of the X'OD' - coded FIT
entry.

Flawed tracks are automatically token care of by the 1/0
system assuming that the requested byte count does not cause
the transfer to cross a track boundary from a good track to
a flawed track. If the user ensures that a II tracks are good,
the hardware will automatically handle the case in which a
track boundary is crossed. However, the user must handle.
the cylinder overflow condition himself. (A new seek must
be issued between accessing the last sector of one cylinder
and the first sector of the next :cylinder.)

CALCULA T1NG PHYSICAL ADDRESSES

All of the 1/0 procedure calls described below are avail­
able to the mapped or unmapped user. Several require that

MiscelloMotIS Real-lime'Services .139

physical address-es by passc<:i. For all mapped users, the
IJSCr may convert a virtual address to a physical address by
u~ng the M:WAP plocedure coil descNbed previously.

In order to'enSl,Ife that amapped user is not swapped between
the time that the physical address is calculated and the'
time the I/o is requested, the M:HOlD (Lock. in Core)
service should be performed. . .

Note, however, that a mapped, master mode program is
assured of not being swapped as long as it does not request
any moni tor services via CAL 15.

EXECUTE CHANNEL PROGRAM

M:EXCP The M:EXCP procedure causes the user's own
channel program to be executed. The format of the pro­
cedure call is

M:EXCP (CPA'{?I~~loc)}), (DCT, [*]index)~

L[, (PR!, [*]priority)][, (EA, [*]Ioc I

4[*] eo 0)][, (TOI, [*]volue)]

where

DA{loc} specifies the physical doubleword address
of .the start of the channel program.

*Ioc specifies the word address of a word which
contains the physical doubleword address of the
start of the channel program. (The asterisk is
required.)

OCT, [*]index is the OCT index of the device
associated with the channel program.

PRI, [*Jpriority is the priority to be associated
with the requested I/o operation. P-riority re­
quests range from 0 to X'FF' (highest to lowest).
Priorities in the range of 0 to X'BF' are treated
as real-time priority requests; XICOI to X'FF' are
treated as background priority reque$ts. The only
system I/O that operates at a real-time priority
is swapping I/O (priority = X'lO'). The default
priority is X'FF'.

EA, [*]Ioc is the physical address of the user's
end-action routine.

eai is a word of end-action information. This
information is passed back to the user's end-action
routine.

Tal, [*]value is a time-out value specified in
five second increments. The default value is
five seconds.

140 Miscellaneous Real-Time Services

The userls end~c::tion routine. (if specified) is entered
unmappedl viC! a BAL'on regi,ster 11. All registers may be
considered volatj Ie (excE!pf regJster 11,. through which re­
turn is made to the monitof)'· The following information is

. passed to the end-action rotltine: .

Resister Bit Fields Contents

7 24~8 -,OCT
12 8,8, 16 Tye, -, RBC
13 16, 16 -,CCA
14 32 EAI
15 13, 19 -iBUF

where

OCT is the OCT index.

TYC is the type of completion code returned by
the device handler.

RBC is the remaining byte count.

CCA is the current lOP command address.

EAI is the end-action information specified in the
procedure ca II.

BUF is the doubleword address of the start of the
channel program command list specified by th~
M:EXCP call.

The end-action routine may obtain the complete TDV status
by referencing the doublewor9 table DeT13 using the OCT
index in register 7.

- CALL NEWQ

.M:N EWQ The M: NEWQ procedure requests I/O to be
performed without a DeB and without a user-built channel
program. The format of the procedure call is

M:NEWQ ~{~}] (FC, [*]code),------.,

L {BA(loc)} [*] (BUF, *Ioc), (SIZ, valu~)i

{
, (DA, * disk address} [(PRJ [*J • •)11
,(OCT, [*]index) , , PflofltY~;=-:=J

L r, (NRT, [*]value~] ,[, (EA, [*]loc
2
[, [*]eai)]

where

W/NW is the WAIT/NO-WAIT option. The un-
mapped user always does I/O with NO-WAIT. This
implies that the unmapped user should always (ex­
cept for unusual cases) specify an end-action ad­
dress in order to ascertain when the I/O has com­
pleted. The mapped user will do I/O with WAIT
unless otherwise specified by the procedure call.

FC, [*]code is the function code .. :W~iJ:h oefines (to
the device handler) .!h~ Jype of-I/O oper.ation to,'
be performed. See'4j:~us$ton" of function codes
below.

BUF, BA(loc) specifies the byte address of the
user's buffer to b'e used in this' I/O operation.

., BUF, *Ioc specifies the word address ofa word which
contains the byte address of the user's buffer.

SJZ, [*]val ua is the byte count to be used in this
I/o operation. {The byte count for mapped pro­
grams should not exceed 32K bytes (X'8000'».

OA, *disk address specifies, for random-access-
device operations only, the address of the word
containing the disk address to be used in this I/o
operation. Disk addresses are of the format de­
s~ribed under the discussion of the M:GDG pro­
cedure call.

OCT, [*)index sp~c;:ifies for non-random-access-
device operations only, the OCT index of the
device to be used in this I/O operation.

PRJ, [*)priorrty. is thepriqrity to be associated with
the r~ques~ed I/o operation. See the description
of priority iunder the discussion of M:EXCP.

NRT, [*]wlue is the number of recovery tries to
attempt before declaring an error.

EA, [*]Ioc is the physical address, or optionally a
pointer to a location containing the physical
address, of the userls end-action routine.

eai is a word of end-action information. See the
end-action description under the discussion of the
M:EXCP procedure call. The only difference is
that BUF is the byte-address of the user's buffer
as supplied by the M:NEWQ procedure call.

To assist the user in determining the correct function codes
to be used with the M:NEWQ procedure calls, the follow­
ing is a discussion describing the function codes of the ex-r isting device handlers in the system.

Typewriter Handler. The typewriter handler accepts the
followi ng function codes:

o - read with editing
1 - write
2 - write with device name
3 - read without editing
4 - read with editing and retry
5 - write new line character
6 - write with device name tabbed

.RAD Handler. The RAD handter accepts the foliowing
funCtion codes:

0 ... seek-read
r - se~k~wri te
2 - sense
3 - seek-checKwrite.
4 - seek-write; seek~checkwrite

Error recovery 00 the RAD generally amounts to redoing the
same operation when an error has been detected. One ex­
ception is when a checkwrite is being performed fora write
and an error is indicated. In this case, the write is done
over, followed by another checkwrite.' Checkwrites are
performed for all writes if sense switch 1 is set on the op­
erator's console. Special conditions checked for are write
violation and illegal seek address.

9-Track Tape Handler. The 9-track tape handler accepts
the fo!lowing function codes:

0- read
1 - write
2 - read reverse
3 - write tape mark
4 - backspace record
5 - forwardspace record
6 - backspace file
7 - forwardspace file
8 - rewind
9 - sense

10 - correctable read recovery
11 - noncorrectable read recovery
12 - write recovery
13 - correctable read reverse recovery
14 - noncorrectable read reverse recovery
15 - write tape mark recovery

7-Track Tape Handler. The 7-track tape handler accepts
the following function codes:

o - read packed
1 - write packed
2 - read reverse packed
3 - write tape mark
4 - backspace record
5 - forwardspace record
6 - backspace fi Ie
7 - forwardspace file
8 - rewind
9 - read bil1!lry

10 - write binary
11 - read reverse binary
12 - read decimal
13 - write decimal
14 - read reverse decimal
15 - read packed recovery
16 - write packed recovery
17 - wri te tape mark recovery
18 - read binary recovery
19 - write binary recovery

. Miscellaneous Real-Time Services 141

40 - read decimal recovery
21 - write decimal recovery
22 - fi no I backsoClce record for reverse read
23 - fin~+ backsP,oce r~ord if unrecoverabl.6 error

Card Reader Handler. The ~ard. reader hot")dier accepts
the following function codes:

o - read binary
2 - read automatic

line Printer Handler. The line printer handler accepts
the following function codes:

1 - write without format
3 - write with format

Paper Tape Handler (PTAP). The paper tape handler ac­
cepts the followi n9 function codes:

o - read automatic
1 - write BCD
2 - read count
3 - write binary
4 - read direct
5 - write direct
6 - read BCD
7 - read binary

Card Punch Handlers. The card punch handlers accept the
fol !owi ng function codes:

o - punch BCD
1 - punch bi nary

Disk Pack Handler (DPAK). The disk pack handler uses the
following function codes:

o - seek-read
1 - seek-write
2 - sense
3 - seek-checkwri te
4 - read
5 - write
6 - checkwri te
7 - restore
8 - seek-read header
9 - read header

Appendix;.\ 01 Ine CP-V/Bp Referent-e Manual, 90 1764.)
The format of the M:QUE procedure· call is

M:QUE [*Jdcb, (FC,J*]code)['(EA, [*Jloc[, [*]eo;])]

where

dcb specifies the DCB aSS9,ciated with the re-
quested I/O operation.

code is an 8-bit code (described in Figure 17 be-
low) which defines (to the device handler) the
type of I/O operation to be performed. The code
may be expressed as a decimal number or as a
hexadecimal number in the format X'dd'.

loc and eai function exactly as described under
the discussion of the M:EXCP procedure call.
The user's end-action routine (if specified) will
be entered unmapped via a BAL on register -II
after the TYC (type of completion code) and ARS
(actual record size) have been entered into the
DCB. The following information is pasSed to the
end-action routine.

Register Bit Fields Contents

6 15,17 -, BUF
7 24,8 -,OCT
8 8,7, 17 FC, -, DeB

14 32 EAI

where

BUF is the 'word address of the user's buf-
fer associated with this I/O request

OCT is the OCT index as specified in the
CDA field of the DCB at the time of the
M:QUE procedure call.

FC, DCB, and EAI are as specified in the
M:QUE procedure call.

For the unmapped user, the I/o will be queued at a priority
of X'FF'. For the mapped user, the I/o will be queued
based upon the user's current execution priority.

o I 2 3 "

Code

where

Code has the following meanings:

CAll QUE 0 - read BCD

M:QUE The M:QUE procedure requests that I/O be
performed through parameters supplied in a specified DeB.
At the time of the call, the specified DeB need only be.
9 words in length but must contain valid information in the
following fields: NRT, QBUF, BLK, and CDA. (See

142 Miscellaneous Real-Time ServIces

- read direct BCD

2 - read binary

Figure 17. I/O Operation Codes for Device
Handler (M:QUE)

3 - read directb1~ry

4 .- write BCD.

5 - write di.rect BCD

6 - write binary (write and format)

7 - write direct binary

A - skip r~cord forward

8 - skip record reverse

C - skip file forward bits 1-3 are

D - skip file reverse
ignored for
these codes

E - rewind

F - write end-of-file

FBCD .specifies no FORTRAN conversions
if 0 or FORTRAN conversions if 1.

OIR specifies forward direction if 0 or· re-
verse direction if 1.

If the device is not 9T, n, or MT, only bits 5
through 7 are meaningful.

Figure 17. I/O Operation Codes for Device
Handler (M:QUE) (cont.)

SEND CHARACTER TO TERMINAL

M:COC The M:COC procedure sends a character to a
user terminal.

M:COC {(UN, [*]user l)} {CHAR {'character'}>
(LN, [*]linel) , , *Ioc(, ireg]

where

user' . is the user number of the user whose terminal
is to receive the character.

linel is the line number of the terminal which is
to rece ive the character.

'character' is the EBCDIC character to be sent to
. the specified terminal.

*Ioc(, ireg] specifies the address of a location
which contains the character to be sent to the
terminal (Ioc), (The asterisk is required but does
not indicate indirectness.) The ireg field specifies
on index register which contains the byte displace­
ment which, when added to the address specified
by loc, will yield the byte address of the char­
acter to be sent to the terminal. If ireg is absent,
loc is auumed to contain the left-justified char­
acter to be sent to the terminal.

DYNAffltG PHYSICAL PAGE ~'llotAT.IO~
. '. FOR REAL· TIME PHOCESSIHG:' '.

INTRODUCTiON

Physical pages are mode available fo~ real-time processing
in either of two ways: .

• Dedication of physical core,poges at boot-time. These
pages are known as the Resident Foreground (RESDF)
poges. SYSGEN parameters define the physical pages
that are to be removed from the system and dedicated
to real-time processing. These pages remain dedi­
cated reaf-time pages until returned to the system via
the Physical Page Stealer (PPS) Ghost.

• Dynamic acquisition and release of physical core pages
during normal operations. These pages are known as
the Dynamic Resident Foreground (DYNRESDF)' pages.
The operator can acquire or release DYNRESDF pages
by communicating with the Physical Page Stealer (PPS)
ghost job.

In both cases, foreground memory is allocated in 'memory
segments'. A memory segment in this context is simply a
set of contiguous physical pages. There is only one RESDF
memory segment (i. e., that which may be allocated at
boot-time). There may be several DYNRESDF memory
segments, the maximum number of which is specified at
SYSGEN time. All real-time memory segments must be
allocated in the area between 64K and the end of physicol
core.

The operator, byeommunicating with the Physical Page
. Stealer ghost job, has control over the allocation of both

RESDF and DYNRESDF pages. The operator also has the
ability to reset the SYSGEN defined RESDF size and maxi­
mum DYNRESDF size thus affecting the system's maximum
user size. Increases to RESDF size or to maximum DYN­
RESDF size cause a decrease of the maximum user size;
decreases to RESDF size or the DYNRESDF size couse the
maximum user size to be increased. By setting the maxi­
mum number of real-time pages that may be allocated to a
minimum, the operator is able to allow very large jobs to
be scheduled. Decreases to the maximum real-time page
values may be effected at ony time. Increases that would
couse the maximum user size to be set to leu than 186 pages
are lim ited to times when there are no users on the system
other than system ghosts; i. e., the system must be quiescent
except for AllOCAT, RBBAT, FILL CI'ld the PPS ghosts .
Neither RESDF nor DYNRESDF maximum size may be in­
creased to the point where the maximum user size is too small
to allow the system ghosts to run.

smEal CONIIDERATlOI'

The system parameters that define the poges to be 0110-

cated at boot-time, the maximum number of pages that may
be dedicated for real-time use, and the maximum number
of memory segments that may be allocated for real-timo

. Dynamic PhysIcal Page Allocation for ReaI-TirM Procellin" 143.

processing rn~y be. specified, via options, of the .:F.RGD
command offtAS-S'2. 'The f~rmat of these;· o'ptions j.$. oS .

follows:

(RESDF, size, address).

where

size spec ifies, in decimal, number of pages, the
deraul t si~e of the dedicated foreground memory
olea to be allocoted at system initialization.

address speciHes, in hexadecimal, the word ad-
dress of the first page in the RESDF memory seg­
ment. This value must be equal to or greater
than 10,00016.

Both size and address may be overridden by the operator at
system initiolization. Both parameters may be reset via
communication with the Physical Page Stealer ghost job.

(DYNRESDF, pages, segments)

where

pages specifies in decimal the maximum number of
pages thot may be dynamically allocated for fore­
ground use. These pages are not removed from
the system until requested, but the maximum user
size is reduced by the value specified. This value
may be altered by the operator via the PPS ghost.

segments specifies in decimal the maximum number
of dedicated real-time memory segments that may
be allocated for foreground use. The default
value is one.

INITIALIZATION

When a real-time system is booted from a system tape and
operator console interaction is requested, or when a real­
time system is booted from the system RAD, the following
message is output on the OC device:

RESET RESDF VYY, XXXXX?

This allows the operator to override the SYSGEN-defined
values for the beginning of the RESDF area and/or the size
of the RESDF area. The operator should respond as follows:

[yyy j [, xxx xx] e
where

yyy is the number of pages in decimal to be in the
RESDF area. A value of 0 through 999 may be
used.

xxxxx is the word address in hexadecimal of the
first page in the RESDF area. A value 9reo~er
than 10,00016 (64K) must be used.

.Either value moy be omitte,d, or a response of NEW LINE
alone moy be used to req'uest the. SYSGEN-defined default

. for .the omitted value(s}. . .

THE PHYSICAL PAGE STEALER·GHOST JOB (PPS)

The Physical Page Stealer ghost job is used for the manage­
ment of all dedicated foreground memory. It is loaded for
execution via the folJowin~ keyin:

IGJOB PPS

PPS then asks the operator for a command:

~ __________ id_:(_PP_S) __________ ~1 I
The operator may respond with one of the following commands:

01 [SPLAV] Display memory segments cUllently
allocated.

GE[T~ yyy, ~xxx Get DYNRESDF pages.

FR[EE) yyy,xxxxx Free OVNRESDF pages.

OV[NRESDF] yyy
~.S~F pages.

Reset maximum number of DYN-

RE[SDF] (yyy][, xxxxx] Redefine the RESDF area.

EN[O] Exit ghost job.

where

yyy specifies in decimal the number of pages.

xxxxx specifies the word address in hexadecimal
of the first page in the real-time memory seg­
ment. This value must be equal to or greater
than 10,00016,

PPS will attempt to perform the requested function, type
an error message if the function cannot be performed, and
reprompt the operator to get the next command. The END
command is used to terminate PPS processing.

If the format of the command is in error I such as missing
parameters, bad delimiters, etc., PPS will type 'EH??'
and reprompt the operator to reenter the command.

The following message will be displayed if the number of
pages specified is in error:

EXPRESS' OF PAGES li:'l DECIMAL 0-999

144 Dynamic Ph)'ll CO I Page Allocation for Real-Time Processing 90 31 131-2(9/78)

Th6 fot lowing meisdge will be d,ilipioyed if the page addreu
specified is in error: ','

where xxxxxis the word addr.l~ of the lost page of
physi co I, core. ' .

If the version of :MONSTK with which PPS was loaded does
not correspond to the :MONSTK of the running system, the
following mesSage will be ,disp,layed:

I . LOADED WITH WRONG :MONSTK

Since the operator is the only one who is allowed to com­
municate with the PPS ghost, running .PPS is not allowed
ffom on-line or batch. If attempting to run PPS other than
as a ghost job, the following message will be typed:

I f PPS MUST BE EXECUTED AS A GHOST JOB

The PPS commands are described in detai I in the following
paragraphs.

DISPLAY The DISPLAY command is used to obtain
informotion concerning allocated real-time pages and the
current settings of system parameters that define the maxi­
mum real-time pages allocation •.

i
The following information is output on the OC device:

MAX DYNRESDF = yyy

CURRENT DYNRESDF = yyy

DYNRESDF SEGMENT yyy xxxxx

RESDF SEGMENT yyy xxxxx

MAXIMUM USER CORE::;: yyy

where

yyy is the decimal number of pages.

xxxxx is the hexadecimal word address of the first
fXlge in the real-time memory segment.

The DYNRESDF SEGMENT message is repeated for each
currently allocated DYNRESDF memory segment.

GET The GET command is used tool locate DYNRESDF
pages. This command may be used at any time and has no
effect on the maximum user size. The format of the
command is

GE[T) yyy, xxxxx

where

yyy specifies in decimal the number of pages.

xxxxx specifies the word address in hexadeci-
mal of the first page in the real-time memory
segment. This value must be equal to or greater
than 10,00°

16
,

The PPS g~'st first validates that it i$>' valid ;0 aliocote
DYNRESDF pogt'S. If the maximum number 'of DYNRESDF
segments has already been allocated, the following mes-
sage if, displayed: . .

,I MAXIMUM DYNRESDF SEGMENTS ALLOCATED

If the allocation of the DYNRESDF memory segment would
cause the number of DYNRESDF pages to exceed the maxi­
mum allowed, the following message is displayed:

EXCEEDS DYNRESDF

The PPS ghost then validates that the pages specified are
available. If the pages are currently being used by the
monitor, (i.e., for transaction processing), the following
message is typed:

PAGES IN USE BY MONITOR ~

If some or all of the pages specified are allocated as RESDF
or DYNRESDF fXlges, the following message is typed:

PAGES ARE REAL TIME PAGES

The DISPLAY command should be used to determine the
current allocation of real-time memory segments.

If the fXlges cannot be obtained for any other reason, the
following message is typed:

UNABLE TO OBTAIN PAGES

Otherwise, the pages specified are removed from the system
and the operator is prompted to enter the next command.

FREE The FREE command is used to return currently
allocated DYNRESDF pages to the system. This command
may be used at any time and has no effect on the maximum
user size.

The format of the command is

F R(EE] yyy, xxxxx

where

yyy specifies the number of poges in decimal.

xxxxx specifies the word address in hexadecimal of
the first page inthe leal-time memory segment. This
value must be equal to or greater thon 10,00°16,

90 31 138-2(9/78) Dynamic Ph)'Sical Page Allocation for Real-Time Processing 145

DY N·RtSDF memor y scgment~ C(ln~K>t be par ti,aIly released.
ThOt i~,; ;.01 Lpog~s 'within the rr;omory segment must be .
relcased,J.,'i;t'l:\ one FREE command. If th~ fX"ges s'pecifj~d
are not tota'il/containedi'none memory"segment, o'r'the
entire memory segment was not specified, the'followi~
messoge is displayed:

NOT A DYNRESDF MEMORY SEGME-NT~

The display command should be used to determine the
currently allocated DYNRESDF segments.

If the segment specified is valid, the pages will be returned
to the system and the operotor will be prompted to enter
the next command.

DYHRESDF The DYNRESDF command is used to re-
define the maximum number of pages that may be removed
from the system to be used as dynamic RESDF pages. No
pages are obtained or released as a result of this command.
This commClnd alters the maximum user size.

The format of the command is

DyrNRESDF] yyy

where yyy specifies the number of pages in decimal.

The value specified is compared to the current setting of
maximum number of DYNRESDF pages. If attempting to
increase the maximum size, the system must hove no users
other than system gho~ts. If other users are on the system,
the following messoge is typed:

I L SYSTEM IS ACTIVE - NO CAN DO ._-------
The maximum user size will be decreased by on amount
equal to the increase in maximum DYNRESDF pages. PPS
checks to determine that the system ghosts would be able
to tolerate the decrease in user size. If not, the following
messoge is displayed:

It ~ ___ R_EQ_U_E_S_T_W_O __ U_LD __ lO __ C_K_O_U_T_S_Y_S_T_EM __ G_H_O_S_T_S __ _

Otherwise, the maximum number of DYNRESDF pages that
may be allocated is reset as specified and the maximum
user size is decreased by the amount of increase to maxi­
mum DYNRESDF po~es ..

If attempting to decrease the maximum number of DYNRESDF
pages and the maximum user size would fall below 186 poges,
the value spec ified must be equal to or greater than the
number of DYNRESDF pages currently allocated. If not,
the following message is displayed:

CURRENT DYNRESDF PAGES.> NEW MAXIMUM

Oth~r.wise, the maximum numbel of DYNRESDF poges that
may' be .allocated is reset as specified ~nd the maximum
user size is increased by the om,.>unt of declease to maxi­
rl)um DY "! RES DF pages.

·.flE$OF The RESDF command is used to redefine the
RESDF memory segment. The RESDF command may be used
to release all RESDF pages to the system or to obtain RESDF
pages.

The format of the command is

RE[SDF][yyy](,xx>(xxj .

where

yyy specifies the number of pages in decimot~

xxxxx specifies the word address in hexadecimal
of the first page in the real-time memary seg­
ment. This value must be equal to or greatel
than 10000

16
, '

To release all RESDF pages, the following format should be
used:

RESDF 0

This will cause all RESDF pages to be returned to the sys­
tem. The maximum user size will be increased by the
RESDF size.'

If the RESDF memory segment is not CUlrently allocated
when this format of the RESDF command is used, the fol­
lowing message is displayed:

NO RESDF PAGES ALLOCATED

To re-establish the RESDF memory segment, the following
format of the command should be used:

RESDF [yyy] L' xxxxx]

If ei ther the number of pages or the word address of the
fi rst page is not spec ified, the previous vol ue of the pCllam­
eter is used.

If the RESDF segment is currently allocated, the following
messoge is typed:

RESDF PAGES ALREADY ALLOCATED

When t.his format of the RESDF command is used, the max­
imum user size will be decreased by on amount equal to
the size of the RESDF segment to be allocated. There­
fore, if the maximum user size would fall below 186 pages,

146 Dynamic Physical Page Allocation for Real-Time Processing 90 31 138-2(9/18)

there must be no users on the system ot-her than system
ghosts and the system 'ghosts must be able to to.,terate the ..
decreased user size., Checks are also made tc) determIne
if the pages specified are available as described under the
discussion of the GET command.

Otherwise, "the pages specified are removed fram. the
system and the maximum user size is decreased ,bY' an
amount equal to the number of pOges in the RESDF:'~e'mory .
segment.

END The END command terminates PPS processing. and
has the format

ENi.D]

MONITOR DEFs

The following words are DEFed in the monitor root and may
be used by the real-time programmer to gain information
concerning the,current allocation of real-time pages.

RESDF

RESDFP

. ,The size of the RESDF area currently
allocated.' If all RESDF pages have
been returned to the system, the
value is zero.

\ .
\ The word address of the fi rst page in
the RESDF area.

DYNRESDF The number of DYNRESDF pages
currentlyallocqted.

MDYNRESDF The maximum number of DYN~SDF
poges that may be allocated.

PP:UPPC The total number of RESDF and
DYNRESDF pagescurrentlyallocated.

I RESOFMEMORY CAL

Thereat-time uSer 'moy~b~iri informa!ion from, 'th~plonifor
qoncerning: th.ecurrentaflQcotion ~r red1-tijile.,'tT:.emory
seg~~n~sJjy,isstijn!J" the/ollowing .c.~l: ,'"

CAL 1,5 tpt .

where fpt ppints ,to word 0 of the FPT shown below.

, wotd'O

word 1

The systeM ehecks to see if the set of pages specified in the
FPT are currently allocated real-time pages. On return
from the CAL, the condition code setting wi /I be as follows:

1 2. ~ .!

o 0 0 0

o 0 0 1

o 0 1 0

000

000

The pages specified are the RESDF
segment.

The pages specified are a DYNRESDF
segment.

All pages are currently allocated
real-time pages but are not a speci­
fic memory segment.

Some, but not all of the pages are
currently allocated real-time pages.

None of the pages are currently
allocated real-time pages.

Dynamic Physical Page Allocation for Real-Time Processing 147

10. TRANSACTIO~~ PROCESSn~G f l.CUJTiES

This chapter describes a program called the System Queue
Manager and a proc~dure .'that was designed for use by'
Xerox in the development of the transactio.n proces,sing
facilities of CP-V. The procedure shoufd never be included
in any user-written programs. This chapter is intended for
Xerox system programmers only.

The System Queue Manager is a program that is part of the
CP-V monitor. It is essentially a message switching system
developed for transaction processing in CP-V. The Queue
is maintained in core and overflows onto a disk file. This
file is created, opened, closed and otherwise maintained by
a privileged (CO or higher) program defined as the Queue
owner. The Queue owner unlocks the QU~"J;; by executing
the UNLOCK queue call and passing the a('-'~ess of the
Queue DCB to the Queue Manager. The Qve:.Je DCB must
be open and must define a random file for the Queue.
Once the Queue owner has been establ ished and the Queue
unlocked, only that task may LOC K the Queue and close
the Queue file. The Queue file must remain open through­
out the entire UNLOCK-LOCK session.

Following the UNLOCK, the Queue owner stores the start­
ing TID (transaction 10) into the Queue Manager's TTP table
and Queue processing may begin.

Programs with TP authorization may now process messages
through the System Queue Manager. Each message has the
format of a Formal Queue Message (see the GET message
for this format). The entry name is defined as:

first-name-segment. [.•. nth-name-segment.]TID

Each name segment is separated by a period (.). The final
name segment is always the unique TID (in EBCDIC). See
the M:GETID procedure which describes how these unique
TID's are obta ined. For TP, the first-name-segment con­
sists of the identifier (? @ #) followed by the trancode or
reportcode. The maximum length of the entry name is
31 bytes. The first-name-segment length may be no larger
than the KEYMAX specification on the UNLOCK request.
The maximum length of the entry text is 1980 bytes.

To GET messages from the Queue, the DEFINELIST request
is issued to describe the criteria of the entries desired
by this program. A criterion is defined as:.

first-name-segment. [••• nth-name-segment]

Each criterion must have at least one period (i. e., define
at least the first-name-segment). The criterion is followed
by a flog byte which tells the Queue Manager whether
'failed' entries are acceptable or whether 'destructive
readout' is in force. Jf destructive readout is requested,
the Queue message is deleted from the Queue when it is

148 Transaction Processing Faci! ities

moved to the user's buffer. Otherwise the Queue, message
is marked in"progress in the Queue and remains in-progr€ss
until its stdtus is changed (to not-in-progress or failed) or
it is deleted via a PUT requ~st.

The DEFINELIST request is followed by a GET request for
that list (the LIST ID specified with the GET is returned from
the DEFINELIST call). Once the GET has been issued the
associated criteria become 'active', This means that each
time an entry is inserted in the Queue, the criteria will be .
compared to that entry and if a match is found, the ECB
associated with the GET request will be posted with the
X'02' completion code. When the ECB is posted, the GET
request may be reissued to obtain the Queue message. Note
that there is no guarantee that a reissuance of the request
will actually get a Queue message, since another program
may have gotten it or af tered its status since the ECB posting;
therefore the resulting condition codes may still indicate
that the ECB wait is meaningful. When the condition codes
are returned as zero, the Queue message has been placed
in the specified buffer and SR 1 is set with the offset into the
criteria I ist pointers describing which entry was obtai,ned.
An example of a typical GET routine is: ' "'.,:~'.

GETHSG M:QUEUE
··t . ," •.• ''"'-"

*LISTID ,GET, (BUF ,~~DP~i; .. ~~P",
,(BSIZE, 512), (ECB t~E~~~);~ ~ ••• ,

BCR.12 GOTMSG ,~'><~';:;'~f""':'\
BCS ,8 ERRORCHK ABNORMAL ~/SRl·. ,2'"
M:CHECKECB (ECB,GETECa).>,: ,.f :;:~'~_~:.~:"./'.' •• '>'

BNEZ . ERRORECB.·· ·Y·, ; -' . ,
B GETMSG" • " .. ;'" .'

GOTMSG EQU , . $
* AT THIS POINT MSG HAS BEEN RECEIVED

A program does not wait until a Queue message arrives which
satisfies its active criteria. The WAIT option only waits to
give the caller access to the Queue. If no ECB is specified
on a GET request, the caller will get a Queue message if
one is currently queued or will be given a BC-14 abnormal
(return condition codes = 8) if a match is not currently in
the Queue.

The PUT request is used to insert a Queue message into the
Queue, to alter the status of an existing in-progress entry,
or to delete an in-progress entry from the Queue. Each
entry in the 'put list' points to a specific Queue message
and the flag byte in the I ist indicates what action is to be
taken for that Queue message. For a PUT request, each
item in the list is processed before return is made to the
calling program.

The PURGE request is issued to delete a currently defined
get list (a previous DEFINELIST). When the criteria is no
longer valid or useful, the PURGE should be requested to
free up the I ist and criteria pages and the Queue Manager
work space.

~:,lhe STATS request returns the status of a Queue message
·"'·{i. e., Queued, Failed, In-progress, etc.) and optionally the

count of entries queued which match the firs~Ome.~egment·
of the specified criterion. The S TA TS I ist is arwo>ys one
item long. If no list is specified (I ist loc is 0), the ST A TS, :
request returns the current status of Queue itse.1f 0'. e. I '

number of entries queued, number of entries in-progress',
number of entries failed, etc.). ' "

The LOCK request ends Queue processing. All subsequent
requests will be given the BC-ll (Queue Locked) abnormal
code,. The LOCK request must be issued by the same u~er
(i.e., user number) which issued the UNLOCK request,
s.ince that user has been defined as the Queue owner. The
LOCK causes the in-core queue pages to be flushed out to
the Queue file and returns the in-core pages to the system.

. M:GETID PROCEDURE fORMAT

Each Queue message that is placed in the System Queue
must have a' unique identifier appended to the entry name.
This identifier is obtained from the Queue Manager by
i~suing an M:GETJD call. The. TID is returned in hexa­
deci lTIa I in register SR1. It must be converted to eight
~BCt.)J<;: characters and appended to the entry name. The
rID, i~ a.lways the final-name-segment of a ·queue entry

~,\: naip~ ..• tthEf. is separated from the otht:'lr name segments with
"'r·.~4.'Pt!tj;6d (.) delimiter. The format of the procedure

• ~~~~~:;,~:; .. I .

Calls generated by the M:GETID p~oc~dure have the form-

CAll,7 fpt

where fpt points to the FPT shown below.

If the queue is locked when the call is issued, no TID
is placed in SRl and return is made to CAL+l with CCl
set.

I· \

I M:QUEUE mocmuRE FORMAT
1

In transaction processing, the flow of transactions and re­
I ports is controlled through a single queue by the System
L. Queue Manager. The M:QUEUE procedure was developed

for use in the System Queue Manager and requires trans­
action processing authorization (via the Super processor).

Theformat.of·the M:QUEUE procedure is

UNLOCK
DEFINELIST

. ','. {[*]d£b address] PUT
~ .. M!QUEUE (*]Iisf loc .' ,GET
. '. (*]Iistid" STATS

- PURGE

G(option)) .••

LOCK

where

dcb address specifies the address of the DCB for
UNLOCK and LOCK requests.

list loc specifies the location of the list of criteria
pointersfor PUT, DEFINELlST, andSTATS requests.

list id specifies the id of a list for GET and PURGE
requests.

UNLOCK activates usage of the queue and de-
fi nes the queue owner.

DEFINELIST defines the criteria for subsequent
GET requests (i. e., the GET lists).

PUT enters a transaction or report into the queue.

,GET retrieves a transaction or report from the
queue.

.. STATS returns the status of a transaction or report .

PURGE discards outstanding GET lists which are
active for a given user and releases user-associated
queue control tables.

LOCK ensures that the user is the queue owner and
locks the queue from further use.

.- - - - .. -".

The basic options are as follows:

LSIZE, [*Jvolue specifies the size of the list for
PUT or DEFINE LIST •

BUF, [*]address specifies the buffer address for re-
turning aqueue entry for a GET request or for return­
ing queue status information for a STATS request.

BSIZE, [*] value specifies the size (in words) of the
area defined by the BUF option.

WAIT specifies that the caller wishes to wait for
access to the queue prior to resuming execution.

ECB, [*]address specifies the address of an ECB to
be posted when a queue event occurs. A queue
event may be: the arrival of an entry to the queue
which satisfies an active GET list; the availability
of the queue (when the WAIT option was not indi­
cated on the original queue request); or queue
space availabil ity .

. M:QUEUE Procedure Format 149

Th~' following option is appli~able o~ly to the GET request:'

INDEX, [*]va!ue specifies the word displacement
withi'n the GET I ist to start'the search for a criteria
makh. .

The following option is applicable only 'to the' PlJTrequest:

{
HIGH}
LOW specifies the priority for' PUT requests.

The following options are applicable only to the UNLOCK
request:

{OLD}
NEW

specifies whether the queue is a new or
existing file.

BACKUP specifies that the queue is to be kept up-
to-date on secondary storage, (i. e. " whenever a
queue block is modified in core it is to be written
to disk).

QPAGES, [*] value specifies the maximum number of
core pages which can be used for queue blocks and
queue manager work pages.

QSAT I [*] value specifies the percentage of queue
capacity for acceptance of high priority PUTs only.

KEYMAX, [*] value specifies the maximum number
of bytes required to contain any name (trancode)
presented for enqueueing (1-13 may be specified).

. RECOVER specifies queue unlock for recovery mode •

The following option is applicable only to the STATS request:

COUN T specifies that the number of Occurrences
in the queue of a specified criterion is to be re­
turned in the second halfword of SR 1.

The following option is applicable only to the LOCK request:

PAUSE specifies that the queue lock is temporary
and current users may continue processing their
current outstanding requests when the queue is
unlocked.

M:QUEUE FUMeTtON PARAMETER TABLES (FPTS)

Calls generated by the M:QUEUE procedure have the form

CAL 1, 7 fpt

where fpt points to word 0 of an FPT. The code in the first
byte of word 0 is as follows:

FPT Code Function

UNLOCK
DEFINELIST

150 M:QUEUE Function Parameter Tables (FPTS)

FPT ,Code

X'08'
X'09'
X'OA'
X'OB'
X'OC'.

PUT
GET
STATS
PURGE
LOCK

. The various FPT formats are described in the sections that
follow.

QUEUE UNLOCK REQUEST.

The format of the FPT for the UNLOCK request is:

where

F = 1
1

F2 =.1

F = 1
3

F = 1 4

option ECB (P1)

means WAIT option specified.

means BACKUP option specified.

means NEW option specified.

means RECOVER specified.

option KEYMAX (P3)

option QSA T (P 4)

QUEUE DEFlP!E'UST REQUEST

The format of the FPT for DEFINELIST is:

word 0

word 1

hi:l? ," , I ,;. , mill':"" "::~',, ." OISII ~ .;n g ~I;I~ ::~l
where F 1 -= 1 mean~ WAIT o~tJon specified. '"

option EeB (Pl)

option Li st Size (P2)

GUEUE PUT REGUEST

The format of the FPT for PUT is:

word 0

word 1

where

Fl = 1

F2 = 0

F2 = 1

option EeB (Pl)

means WAIT option specified.

means low priority request.

means high priority request.

QUEUE GET REQUEST

The format of the FPT for GET is:

where F 1 -= 1 means WAIT option specified.

option feB (p))

90 31 13S-2(9;78) .

.I:I~ i .Il , • : ;, ... "";,, " i " " .,2 "~n~;,, .. 1% " " ,.I
option Buff~j oddreh . (P3)

opt.ion Buffer size (P4)

QUEUE STATS REQUEST

The format of the FPT for STATS is:

word 0

word 1

where

means COuNT option specified.

means WAlT option specIfied.

optio l1 BS,IZE (P 4)

GUEUE PURGE REQUEST

The format of the FPT for PURGE is:

word 0

where F1 = 1 means WAIT option specified.

EeB address

. M:QUEUE Function Parameter Tables (FPTS) 151

QUEUE,l'OCK fiHlUESl

Thefo'F:iat 'of the FPTfor LOCK is

word (;
4-'---''':---: ~.:' -----+-----:----

~. I 1 ~_ •• ·-,-O.I....-:-r'._. :-----:-+-:--".....,.,~,=··-:-.'.,_o~,. • .~. ,Dcsdddfe:s>' J ~ 10 II 12 I) "'~17 .I~'IP,.IJO,21.·n·)31<.]j)0 271261930 31

where

means WAIT option specified.

means PAUSE option specified.

option ECB (Pl)

ECB address

UST FORMATS

DEFINELIST OR STATS LIST

The format of the DEFINELIST or STATS list is:

The criterion is in TEXT format name-segments followed by
o flog byte. At least one period must appear in the criterion
nome,

The flog byte. has the formot

where

F ' is set to one if failed entries are acceptable
(i. e., the system is to GET the transaction re­
gordless of whether or not it was successful).

D is set to one if the entry is to be destroyed ofter
it has been read. -

I Note: This list must be completely contained within Q

si ng I e page of memory .

152 list Fonnats

, G'Et ~H;SAG'E

The "fo~mQJ of }}l~ "GfiJ ie'ssoge' is:

~.orl'
, . 'r',.1 ..,-r+--+.;;.....;.--.:....-f----........ .a.....---_

r

5

6

Length of record (bytes)

IS 16 2) 24 Jl

(Unused by the queue manager)

lenglh ':If entry fext {bytes)
name (byles)

I
Entry nome

14t-------------I!
1 Entry text J

where

Q indicates queued and is always set to one.

F indicates failed, if set to one.

JI are journalizotion indicators. Although these ,
bits are kept in this status byte, the queue man­
ager does not use this information. The informa­
tion is stored here for use by other transaction
processors.

PUT LIST·

The format of thi?-PUT list is:

where the entries are in journal record format. (See the
GET message, above, for this format.)

The first four bits of the flags field have the following
meaning;

g F P

0 0 Delete in-progress entry.

0 0 Delete special bypass entry.

1 ' 0 0 Insert special bypass entry.

0 0 0 Insert an entry into the queue. ~

0 Mark on entry foiled.

0 0 Put on in-progress entry bock into
the queue.

O. 0 Insert a pre-fai led entry into the
queue.

90 31 13'8-2(9/78)

The J! fi~!,j contains io~rnqi~I·G.tj·~V!i·Qdfcators: Although'

these .bils orc kept in this~tatus'bt4-e/"the queue m~nager
dtle!. riot usc thisinforrilotion:' ThEdnf~nnatj(fn is stored here . .,.

fo~ use bi' the transaction processors.'

M:OU[UE PROCEDURE OUTPUT PAR_METERS

SRllNfORMATION

UNLOCK: Transoction id returned in SRI

DEFI NELlST; List-id returned in SRl

GET: Word displacement within the list to .the criterion for
whi en an ~ntry has been stored ,n the caller's buffer.
The format of the entry itself is given in the List For­
mats section.

Displacement returned in SR1

Word displacement
1 - X'FFFf!

1 I) 4 5 6 7 BOlO 11 12 13 14 15 16 17 1& 19 20 21 22 23,24 25 20 27 28 29 30 31

PUT: Word displacement within on erroneous list to the entry
in error. (The SR1 format is the some as for GET.) If
no errors occur, S~l.is.meaningless.

STATS: The status of aqu~ue entryand, optionally, Q count
of such entries are returned in SR1 .

i 9

where

Bit 0 = 1

Bit 1 = 1

Bit 2 :- 1

means entry queued.

means reserved.

means entry in foiled status.

Bit 3 = 1 means entry in progress, i. e., given to a
transaction processor.

EeB IIFORMA nOI

ECB completion codes for a queue .request are:

X'Ol' An entry has been placed in the colfer's buf-
fer. (Posted on a GET request only.)

X'02' Normal return. For a GET request, an entry
is present •. R~quest it again.

X'OF' Abnormal return. (SR3 contains the obnormol
code.)

CONDITION CODE SETTINGS

When the tv'\;QUEUE procedure is performed J the following
condition code st::ttinss rno)' resul.t: .

CC 1 : ' ,CC2:. Status.'

o o

1

Norma! return.

Queue unavailable Or request cannot
be satisfied. (Abnormal cooe h
in SR3.)

ECB wait is meaningful.

QUEUE ERROA CODES

Errors detected by the system Queue Manager result in
error notification to the caller or a user abort. The error
code for M:QUEUE CALs is X'BC'. The code is cornmuni­
cated to the coller in SR3 and, if the ECB option is speci­
fied, in the ECB. The code is contained in byte 0 of SR3,
a subcode is contained in bits 8-14, and the content of the
FPT word 0, bits 15-31 is returned in the rightmost 17 bits
of SR3. Therefore SR3 may contain the dcb address, listloc
or listid depending upon the queue request. The error sub­
codes are listed in Table 46.

Table 46. M:QUEUEError Subcodes

Subcode Meaning

01 Illegal queue service requested
(e. g., an unlock is requested and
the queue is not locked or the
coller is not an authorized TP
user). The task is aborted.

02 An event not associated with the
queue has occurred f0r the user
(e. g., M:INT, abort, ESCape or
BREAK).

03 Error retum from get physical work
page (abort during unlock pro-
cessing only).

07 Queue sabrated; i. e. I index core
space or queue secondary storage
space is unavailable.

08 Queue lock or unlock coller does
not have the required privilege.
The task is aborted.

M:QUEUE Procedure Output Porameten 153

1.54

-;oble <16. 1\t~:OUEUE Error $uo::odcs (cont.)

09

OA

10

,11

12

13

14

15

""~eaning

DeB not ~penfor d lock 0;- unlock
request. The -task is abotted ~

Spoc~ is 'not o,~ai r(]b:te to deftne a
list. '

Error in specified address, size,
or queue message format.

Queue locked.

Queue physical page space is not
available.

Error in the FPT parameters or the
specified list.

Entry not found oro queue request
requiring an existing entry.

I/O error during control/index
transfer for an unlock request.
The task is aborted.

M:QUEUE Procedure Output Parameters

:T,o-~~.~ 46. M:QUEUF. Error Subc.ooe,> (cont. \

'_ ~-s;~t----- -~~~~~-;:-----. -------:]
16,' 1>0 ~rr~r during a data block .

transfe'r.

17:

20

21

23

Queue busy. Either current user
has tried fo lock the queue while
in use by another user, or the
queue is in a pause status due to a
volume switch operation on the
ioumot tape.

Queue GET or PURGE request for
a non-existent GET list.

Queue has not, been initialized,
but users are permitted to access
it.

A nome-segment must be com­
prised only of upper/lower cose
alphabetic characters and/or the
EBCDIC representation of the
numbers 0 through 9.

90 31 138-2(9/18)

Table A-l. Standard 'Operational lapel~'ond
"Default Device Assignme~!.~

Opera-
tional On-Line Ghost
Label Batch -Device Device Device

C Card reader . Terminal Operator's
console

OC Operator's Terminal Operator's
console console

LO li ne pri nter Terminal li ne pri nter

LL li ne pri nter Terminal Li ne pri nter

DO Line printer Terminal Line printer

PO Card punch None Card punch

8"0 Card punch None Card punch

LI Card reader None Operator's
console

51 Card reader Terminal Operator's
console

BI Card reader None Operator's
console

, .

5L Line printer Terminal Lineprinter
~.

SO Card punch None Card punch

CI Card reader None Operator's
console

CO Card punch None Card punch

AL Card punch None Card punch

EI Card reader Terminal Operator's
console

EO Card punch None Card punch

UC Operator's Terminal Operator's
console console

.. T<;sble A-i~ tlqtch Assignmen,t of Operational
.Labels .

Devic::e' .Oplabel

Line print.er
"

LO, lL, DO, SL, LP

Card reader C, LI, SI, B1, CI, El, CR

Card.,unch PO, BO, SO, CO, Al,
EO, CP

Oper.dfor's conso I e OC,UC

9-track magnetic tape 9T

7-track-magnetic tape 7T

Default tape MT

None NO, ME

Table A-3. On-Line Assignment of Operational
Labels

Device Oplabel

User's t~rminal C, OC, lO, LL, DO, SI,
5L, EI, UC, ME, CR

Card punch CP

Line printer LP

9-track magnetic tape 9T

7-track magnetic tape 7T

Default tape MT

None NO, PO, BO, LI, BI, SO,
CI, CO, AL, EO, PR, PP

AppendIx A 155

A physical device nar:ne is indicated by yyndd.

where

,

yy specifies the type of device (see Tabl~ B-1).

n specifies the lOP letter for Sigma computers (see
Table B-2)or cluster/unit for the Xerox 560 (see
Table B-3).

dd specifies the device number (see Table B-4),
in hexadecimal.

Table B-1. Standard I/O Device Type Codes

yy Device Type

7T 7-track magnetic tape

9T 9-track magnetic tape
-.

CP Card punch

CR Cord reader

TV Typewriter

lP line printer

DP
~

Disk pack

DC -- Magneti c disk

ME CP-V terminal

RB Remote processing data set
controller

XP Optical character printer

MO Message mode communica-
tions equipment

Me Remote assist terminal
(maintenance console) - . - "1 -.. --' - . -

156 Appendix B .'

J.

I

Table B-2. Sigma lOP Designation Codes

lOP
Letter (n) Unit Address

A 0

8 1

C 2

D 3

E 4

F 5

G 6

H 7

Table B-3. Xerox 560 Cluster/Unit Matrix

Unit
Number Cluster Number

0 1 2 3 4 5 6' 7

0 A B H N T Z 5 • .. ~ ,

1 $ C I 0 U 0 6 •
2 I 0 J P V 1 7 ..
3 @ E K Q w 2 8 •
4 : F ·L R X 3 9 1t

5 .. G M S Y 4 L.J •
6 .. ~ • •
7 .. • •

•
Reserved

. Table 8-4. Device Designati"on Codes

Hexadec i rna I Device
Code (dd) Designation

00 dd 7F Refers to a device number
(00 through 7F).

80 $dd $ FF Refers to a device controller
number (8 through F followeq by
a device number 9 through F).

Code: 01

- Called From:

Message:

Registers:

Remarks:

Code: 02

. CaHed From:

Me,ssage:

Registers:

Remarks:

Code: 04-04

Called From:

Remarks:

Code: OA

Called From:

Messoge:

Registers:

90 31 13B-2(9;78)

- .

APPE~xJDIX C. CP-V'S,OfP/\~ARE CHECKCODES

Table C-l. CP-v' -~ft 'Ore Chec~ Codes

SCHED, MM

USERS - PAGE CHAIN INCONSISTENT

When called from SCHED:

RO - 0 if circular or unlinked chain; otherwise, the Link number index in chain.
Rl - link register.
R2 - Next page chain link.
R4 - User being scheduled.
R7 - Address of Chain Head, Tail, and Count Tobie.
5R4 - Offending page number.

When called from MM (T:XPGVI):

R1 - Zero.
R3 - Physical page number.
R7 - Vi rtua I page number.

The requested virtual page in the user virtual mop chain (JS:LMAP) can1t be found. See T:PGCHK
in SCHED. Effective when 551 set.

SCHEO

REPORTED EVENT INCONSISTENT WITH USER'S CURRENT STATE

R3 - Previous state.
R4 - User number (T:RE, T:RCE).
R5 - User number (T :RUE).
R6 - Event number.
R7 - line number-(T:RCE).
SR4 - Return address for reschedule.

The contents of R3 through R7 are dependent upon the called entry point. If R4 = S:CU, the
call was T:RE. If R7 is the line number of the user in R4, the.call was T:RCE. If R4 = R5,
the entry is T :RUE.

SCHED

Code is reserved for system zap and reboot after a zap.

DPSIO, TSIO

OPCODE IN SWAP COMMAND CHAIN IS INVALID

Case 1, command list security checks - SS4 set:

R1 - Incorrect command list order code if not equal to RJ.
R2 - Incorrect command list entry address (lOCO).
R3 - Order code of first lOCO in command list.
R4 - Swap device index.
R6 - Command list beginning address.
R7 - Swapper function code.

Appendix C 157

Code: DB

Called From:

Message:

Registers:

Remarks:

Code: DC

Called From:

Message:

Registers:

Remarks:

Code: i 00

Called From:

Message:

Registers:

Remarks:

Code: DE

Coiled From:

Message:

Registers:

Remarks:

158 Appendix C

Table C-1. CP-V' Software Check Co::!es (cont.)

Case 2, Unrecoverable read error during inswop:

R 1 ~ Inswop user number.
R7 - DCTindex.
SIU .:. 'Incorrect command list'entry address (lOCO).
D1 - Order code.

DPSIO, TSIO

INCORRECT ORDER CODE IN SWAP COMMAND LIST

R 1 - Incorrect order code; not seek.
R2-R7 - See case 1 of screech code OA above.

SS4 must be on for check.

DPSIO, TSIO

ATTEMPT TO SWAP MONITOR'S MEMORY

\

~ 1 Buffer addre.5s.
R2-R7 - See case 1 of screech code OA above.

SS4 must be on for check.

TSIO

HALT FLAGS MISSING IN SWAP COMMAND LIST

RO FLAGS byte from TIC command.
Rl TIC order code.
R2-R7 - See case 1 of screech code OA above.

SS4 must be set to check. FLAGS must not have command chaining set and must have interrupt-on­
zero-byte-counter or channel-end set.

TSIO

I/O REQUEST WITH NULL COMMAND LIST

R4 - Swap device irxiex.
R6 - Command I ist beginning address.
R7 - Swapper function code.

Not checked for pack-only swappers.

Code: OF

Called From:

Message:

! Registers:

Remarks:

Code: 10

ea II ed From:

Message:

Registers:

Remarks:

1""

Code: \11

Called From:

Message:

Registers:

Remarks:

Code: 12

Called From:

Message:

Registers:

TobIe C-l. CP-V Software Check Codes (cont.)

DPSIO, TSIO

INPUT FUNCTION CODE IS INVALID

R2 - Swapperfunction code.
04 - X'OP.

SS4 Jllust be on to check. Function code not between one and five exclusively.

COC, ECBBLK

BAD COC aUF POOL, OR BAD BUF ADR ON RELEASE REQUEST

R2 - Logical line number.
R4 - Buffer address.
R6 - Return address from buffer return call.

1. . On a COC buffer release, an invalid relative buffer address was specified (address 15 or
HRBA *4 + 15).

2. On a coe buffer GET or RELEASE, an invalid relative buffer address was found in the free
pool chain. If the coe module was assembled with the COCGBUG and COCPBUG flags set
(normally they're not), and sense switch 4 is set, the entire free pool chain is checked on each
PUT and GET operation. (The R4 and R6 contents listed above are valid only at entry and exit
times.)

COC

INVALID INTERNAL CONTROL CODE TRANSLATE REQUEST . . ~ . ~

R1 - DeB address.
R2 - line number.
R5 - Character.
R7 - Byte address of user buffer.
SR2 - Return address.
SR3 - Output translation table address.

The cause is a translate table error (e. g., 2741 NIL on non-2741 line), or a bad input buffer chain.
R1, R7, and SR4 a·re not always set.

COC

COC - BAD INPUT BUF LINKAGE ON RELEASE REQUEST

RO - Removal point.
Rl - DeB address.
R2 - line number.
R3 - COC number.
R4 - Current release point.
SR3 - Output translate table address.

Appendix C 159

Remarks:

Code: 13

Called From:

Message:

Registers:

Remarks:

Code: 14.
:.

Called From:

: .Message:

Registers:

Remarks:

,

Code: 17

Called From:

Message:

Registers:

Remarks:

160 Appendix C

Table C-1. CP-V Software Check Codes'.(;~:>nt.)

SR4 - Caller's ret U i'ni , RTN + .~ =:= activation. r.

D3 - Retum address. '

The COC input huffers ~r~. being releQsedr"o~d there is a conflict' between th~ insertion and removal
points and the ch6il). RO,.. R it' R3,andR4 are not always set.' "

COC

COC - OUTPUT BUF LIN KAGE OR CHARACTER COUNT BAD

R 1 - DCB address.
R2 - Line number.
R3 - COC number.
R4 - Removal point (usually negative).
R5 - Character.
SR4 - Output count; usually =-1.

The output count and buffers are inconsistent. This may be caused by extended interrupt pulse or
.cfobbered COC tables - usually COCOC, COCOI, or COCOR. Rl is not always set.

THEUNCOC

COCROUTINE CALLED IN NON-Cae SYSTEM

SR2 - BAL odr if 14-03.
'SR4 - BAL adr if 14-01 or 14-02.
04 - BAL adr if 14-04.

The subcooe indicates which routine was called:

'14-01 COCIO
14-02 COCOFF
.14-03 COCSEND,X
14-04 ECHOCR2

10Q

INVALID DISK ADDRESS PASSED FOR AN I/O INSTRUCTION

R1 - 10Q?, R3 = DCTX = O.
R2 .. - DCS address.
'R3 - Queue index.
SR 1 - Seek address from CDA, R2.
04 - XI1?'.

./

Caused by an invalid OCT index. R2 and SRI are not always set. If the invalid address is ona RAD
or disk, DSCVT will have been called and R2 and SR1 will be set.

T?ble C -1. CP-V Softwan:l Check Ccxl8S (tont.)
r-------------~------------~~~

Code: 19

Called From:

Message:

Registers:

Remarks:

Code: 19·01

Coiled From:

Message:

~gisters:

Remarks:

Code: 1A

Called From:

Message:

Registers:

Remarks:

Code: 11

Called From:

Message:

Registers:

Remarks:

90 31 138-2(9/78)

BUfF

INVALID BUFFER ADDRESS P~SSED FOR ~~.LEASE

Rl - Index to BUFLIMS.
R2 ..; Head of respective buffer pool.
R5 - JIT address.
SR4 - link return address.
03 - Buffer address.
D4 - X'19'.

. Occurs both on releasing and acquiring buffers of most types (CPOOL, SPOOL, and MPOOL).

MPCOIO

TOO MANY COWS IN MPOOL

Rl = OCT index
R2 = CIT index
R3 = IOO'index
R12 = Actual number of COWs in request

An I/O request poued to the MPC disk handler may contain-at most 5 command doublewords.

CLS

ACCOUNT DIRECTORY INACCESSIBLE

The account directory is bad and the monitor is unable to reconstruct it. All files are lost.

Swapper

USERS PAGE CHAIN NON ZERO AT SWAP COMPLETION

R 1 - I nswap use r number (5: 15 UN) •
R2 - Physical byte address of JIT.
R3 - UB:US,l (user state).
R4 - Physical page head.
R5 - Physi cal poge ta iI.
R6 - Physical page count.
SR4 - Count of swapper free page chain (S:FPPC).

Swoppers' free page pool must be nonzero at end of inswap. S:FPPH, S:FPPT contain head and toil
of pages just allocated to the inswap user.

Appendix C 161

~ •.. ~. ~, -
; " Cod e: lei-OO ..

Colled'Fr~: SWAPPER

Messoge: INSWAP'PROCE.S'SOR Sf.ZE;EXCEED.s~ SIZ'EOF;' eLiST '1

. . ~ , ". . . . ~ - . .
Registers: Rl = Index into' proc~!o:lor hiswap list

R3 = Inswop processor number
R4 = No. of pages by which processor size exceeds available eLiST space.

Remarks: A shared processor (possibly with an overlay) cannot be inswapped because its size exceeds the size
of the command list space used for processor swapping.

Code: 1D

Called From T:OV

Message: REQUESTED OVERLAY NUMBER IS OUT OF RANGE

Registers: R2 - Overlay name •.
R3 - Overlay name.
R4 - O.
04 - X'ID'.

Remarks:
\. • <-"
iRequested monitor overlay is not in shared processor table.

Code: 1F

Called From: SWAPP~R

Message: NOT ENOUGH PAGES TO PERFORM THIS SWAP,

Registers: R3 - Page to release.
SR1 - Deficient page count.

Code: 21

Called From: MM

Message: ATTEMPT TO SET ACCESS CONTROLS ON NON-EXISTENT VIRTUAL PAGE

Registers: R6 - N umber of pages to set.
R7 - Virtual page number.
SR4 - link register.

Ccx:fe: 22

Called From: PV

Message: PRIVATE VOLUME AllOCATION ERROR

162 Appendix C 90 31 136-2(9/18)

Registers:

Remarks:

Code: 23

Called From:

Message:

Registers:

Remarks:

(.piled From: ...
M~lsage:

Regtsters:

Remarks;~

Code: 2&

Called From:

M~ssage:

Registers:

Remarks:

Code: 28

Called From:

Message:

Registers:

Remarks:

90 31 138-2(9/78)

1Qbl" C~ 1. CP -v '50ft~re' Chf3CK Corl~$(~ont.} .;

R2. - SN count.
R3 - DeB volume number.
R4 - SYSIO(O = EXClusive us~1.~'
R6 - DCB add~ss.
SR4 - Return odd·ress.
02 - DC8:SNT.
04 - X'22' •.

<.

Error in allocation. The specified entry tn AVRTA8 is not found or has bad flags.

CSE57, CSE59, CSEX560, CSECOM

INVALID ENTRY TO CSE HANDLERS

Entry was made to on un'Jsed slot of the CSE branch vector for this machine.

CSEHAND

INSTRUCTION EXCEPTION T~P. ~ M,A-STER MODE

A trap X'40' occurred wnflein the master mode. A slave mode trap~ouses a normal user iob step
abort. All relevant info~mationis i!, .the in-core error log buffer • .

CSEHAND

UNRECOVERABLE '!IATCHDOG TIMER TRAP

Sigma 9 and Xerox 560 systems will atempt recovery from watchdog timer traps resulting fro~ I/O
instructions without screeching. All relevant information is in the in-eore error log buffer.

CSEHAND

CSE TRAP DURING MFJ, PFI HANDLIN G

During MFI handling on a Sigma 9 or during MFJ or PFI handling on a Xerox '560, a CSE trap (X'46',
X'4C', X'40') occurred. All relevant information is in the in-core error log buffer.

Appe~ix C 163 I

I 164

Code: 21

Called ·From:

Message:

Registers:

Remarks:

Code: 28

Table C-l. CP-V Software ChecK Codes (con!!)

CSEHAND

PROCESSOR FAUL T INTERRUPT

A processor fault interrupt occurred for which continued operation is unlikely. All relevant infor­
mation is in the in-core error log buffer. (Xerox 560 .systems.only.)

Called From: CSEHAND

Message: MEMORY PARITY ERROR -MEMORY ALTERED

Registers: -

Remarks: A memory parity error correction caused memory to be altered. Continuation without recovery is not
possible. Caused by interrupt X'56' on Sigma 6 or 7 or trap X'4C' in Sigma 9 or Xerox 560. Air
relevant information is in the in-core error log buffer.

Code: 29-00

Called From:

Message:

Registers:

Remarks:

Code: 29-01

Coiled From:

Message:

Registers:

Remarks:

Code: 29-02

Coiled From:

Message:

Registers:

Remarks:

Appendix C

CSEHAND

TRAP 4C - BUS CHECK FAUL T

A Sigma 9 bus check fault or a Xerox 560 miscellaneous trap X'4C' OCCUried while in the master
mode. Allrelevont information is in the in-core error log buffer.

CSEHAND

TRAP 4C - MAP PARITY ERROR

A map register parity error occurred on a Sigma 9 or Xerox 560 while in the master mode. All rel­
evant information is in the in-core error log buffer.

CSEHAND

TRAP 4C - REGISTER BLOCK PARITY ERROR

A register block parity error occurred on the Xerox 560 ~ile in the master mode. All relevant in­
formation is in the in-core error log buffer.

9031 13B-2(9/78)

I Code: 29-0:$

Coiled From:

Message:

Registers:

Remarks:

Code: 2C-OO

Called From:

Message:

Registers:

Remarks:

Code: 20-00

r~ble C-1. CP,-v So-ftware Check Code$ (cont~)'

CSEHAND

TRAP 4C - WRITElOCK REGISTER PARITY ERROR

A write lock register parity errOr occurred on the Xerox 560 while in the master mode. All relevant
information is in the, in~ore error log buffer.

ADD

8ATCH SCHEDULING ERROR - M8S/CCI ERROR

Rl - (S:CUN),current user number.
R2 - Device type e'

R3 - Context block address.
R5 - O.
R6 - User's DCB address (M:C).
SR2 - OPNLD + .1~.
SR3 - Context block address.
SR4 - OPNlO + .40.
01 -8A (OPNlD + • 1E7) + .28.
02 - 8A (CONTXT BLK + SCFQARGS) + .28.
03 - Device type mnemonic text.

Register' contents significantly different from above indicate the monitor wandered i.nto GETJ in ADD.
Otherwise~ a batch user has been created and has read a card before MBS selected him to be run.
Actually all recorded 2C'5 have been cel attempting to start a second job. Problem is either CCI
read past FIN or a MBS/GETI communication problem (e. g. I GIB:UN clobbered).

Called From: COOP

Message: COOPERATIVE 8UFFER MANAGEMENT ERROR

Registers: R1 - BUFLIMS index for screech code 19.
R2 - .BCll.
R3 - Context block.
SR4 - COOP + .180.
03 - O.

Remarks: ,At context block initialization a buffer was allocated for the context block. This buffer has been

Code: 20-01

Called From:

Message:

lost through core clobbering or mismanagement of a buffer chain. The particular user cannot
continue.

COOP

SYMBIONT/COOP FILE DEVICE INACCESSI8LE

I~-------------------------~--____ -J

90 31 138-2(9;78)
AppeOdix C 165 I

Table C-1. CP-V Software Check Code (cont.)

~-~~~~----~---------~---~------------------~----------~~~-----------------------,

Registers:

Remarks:

Code: 20-02

Called From:

Message:

Registers:

Remarks:

Code: 2D-03

Called' From:

Message:

Register:

Remarks:

Code: 20-04

Called From:

Message:

Registers:

Remarks:

166 Appendix C

RO' - COOP + .198.
R, 1 - Contex t block physicol ~ddress.
R4 - (DCT3(DC1X)}wlil appear in the format XX1X XXXX.
SR4 ~ 'COOP'+ • 15C.
01 - .XXFF0300 + OCTX (X means could be any value).
02 - BA (COOP BUFFER).
03 - .400.
04 - O,isk address.

The symbiont/coop file device containing this user's file is down. If there are many file devices for
symbiont/coop only, this user should be aborted. If only one symbiont/coop file device exists, it is
pointless to run I'he system with that device down.

COOP

USERS COOP CONTEXT BLOCK CHAIN LOST

R 1 - BUFLIMS index for screpch code' 19.
R2 - .BClO.
SR2 - OPNLD + .137.
SR4 - OPNLO + .139.
03 - O.

Similar to 2D-00 but detected at context block open time. Particularly alarming because this check
immediately follows the code which allocates context blocks.

SACT

COOP CONTEXT BLOCK POINTERS CLOBBERED

R3 - O.
R6 - User DCB address.
SR 1 - FCN in leftmost 8 bits; DCB address in rightmoSt 24 bits~
SR4 - Exit from COOP.

Either J:USCDX or context block 0 (special pointers) were cloobered.

SUPCLS

COOP OATA BUFFERS MISALLOCATED

03 - Buffer being released, including spare buffer index in byte O.
RS - Context block 0 address and OBPOOL which is the address of the free context buffer list.
R2 - SV:lSIZ.
SR4 - Return address to caller of Re8UFF.

An attempt was mode to relea •• COOP data buffer when the free data buffer pool was full. Either
the free data buffer pool has been clobbered or too many buffers hove been allocated meaning some
other COOP dota area has been clobbered.

90 31 138-2(9/78)

l Code: 2E

Co lied From:

Message:

Registers:

Remarks:

Code: 2E-01

Call ed From:

. Message:

Registers:

Remarks:

Code: 30

Called From:

, Message:

Registers:

Remarks:

Code: 31

CoIled From:

Message:

Registers:

Remarks:

Code: 32-00

Coiled From:

Message:

Registers:

Remarks:

90 31 138-2(9/78)

Table C-"1. CP-V 'Software Check COdes (cont.)

RDF

POOL BUFFERS LOST -NONE ALLOCATED CURRENTLY

SR3 - DCB address for which buffer is needed.
04 - X'2E'.

An attempt was made to get on IPOOl or FPOOL buffer, but none were in the free pool and no
open DCB had any. Probably either the DCB chain has been clobbered or one or more DCBs have
been cI obbered.

RA

INCONSISTENCY IN READ-AHEAD TABLES

R 12 - Disk address.

An attempt was mode to add an AIR block to the tables when it was already there.

PFSR

UNBAlA~CE6 POWER ON/POWER OFF INTERRUPT PAIRS

Unbalanced pOwer' on/power off interrupt pairs,' more of one than another (usuolly power on, or else
system would hong in waif; i.e.-, B $-1).

GERM

INVALID RESOURCE TYPE

SR4 - ADDRESS + 1 where discovered.

Inval id resource type found.

IOQ

DCB DOESN'T CONTAIN A VALID OCT INDEX

R2 - Address of DCB.

The OCT index is not present in DCB.

Appendix C 167

168

cOde: 34-00

Coiled From.:

Message:

Registers:

Remarks:

Code: 37·00

Called From:

Message:

Registers:

Code: 38-00

Table C-1. CP-V Softwore Check Codes (c~mt .').

TPQl

TRANSACTION PROCESSING FAILURE

The System Queue Manager for transaction processing has discovered an u~recoverable state while
processing transactions.

ENQUE

ENQ/DEQ TABLES MALFORMED

Depend upon how EQSCaO was called. See Code.

Calted From: OUTSYM

Message: 'OUTSYM ATTEMPTED I/O ON A MISSING OR DOWN DEVICE

Registers: R14 = Disk address in error. '

Remarks: The disk address passed to OUTSYM Is either garbled or refers to a down device. OUTSYM cannot
continue with this file.

Code: 41..01

Called From:

Message:

Registers:

Remarks:

Code: 41-10

'Called From:

Message:

Roegisters :

Remarks:

Appendix C

RTROOT

FAILED TO FIND USER'S STATE (M:JNTSTAT)

R2 - Address of ICB being checked.

Probably results from a state having been added to SCHED without updating the four masks used by
the M:INTSTAT routine (WAIT:MASK, EXU:MASK, JOWAIT:MASK, 8lCKD:MASK).

RTROOT

BAD 10EX CALL TO NEWQ

Set for BALR, 11 NEWQNW.

NEWQNW returned to BAL + 1.

90 31 138-2(9/18)

lable C-1. CP-V Software Check Cod~ (coot,)

Code: 41-11

CaUed from: ,RTNR

Message:

. Registers:

Remarks:

Code: 43-01

Called From:

. Message:

Registers:

Remarks:

Code: 43-02

, Called From:

Message:

Registers:

Remarks:

Code: 43-03

Caned From:

Message:

Registers:

Remarks:

Code: 46-21

Called From:

Message:

Registers:

Remarks:

9031 13B-2(9/78)

UNABLE TO RETURN PRE-EMPTED DEVICE

RTNR's.cail to RMAOV was invalid.

CLOCK4

NO ICBS CHAINED INTO RTICBCLKHDR

This is probably caused by overwriting lowcore.

CLOCK4

ICBCLK FIELD Of' ICB NEGATIVE

R2 - Address of bad ICB.
R10 - Current timer increment.

The ICBCLK field of an ICB should never go negative',

RTNR, CLOCK4

NO BACK-LIN K FOUND IN DE:'CHAINED ICB

R2 - Current ICB {the one being de-chained}.
R4 - Forward link {next ICB in chain},

A back-link of zero implies that the current ICB is SYSICBl (the l-second CLOCK3 ICB). This ICB
should never be de-chained (i. e., de-activated).

PV

PRIV ATE VOLUME LOGIC INCONSISTENCY

SR4 - Address where error was detected.

Numerous modules call PVERR.

Appendix C 169

~ '" .. ~.

Code: 49 "

Called From:

Message:

Registers:

Remarks:

Code: 5&

Called From:

Message:

Registers:

Remarks:

Code: 60-00

Called From: .

Message:

Registers:

Remarks:

Table' C-1. CP-V Softwar~ C"e.c~ t~~s·(cont.)

TYPR·

RESOURCE PREAllOCA nON INCONSISTfNT WITH REQUESTS

R3 - O.
R3 - Reel number.
D4 - X'49'.

The user was preallocated the resource (according to his Job context), but when the system got to
the point of actual allocation, it found that none of that resource was available. Either the job
context specifying preallocation is damaged or the system context recording actual allocation is
damaged.

MOCIOP

UNABLE TO RELEASE PHYSICAL WORK PAGE

The registers at the time of the trap.

Originates in the MOCIOP module when unable to release a physical work page locked.incor.e
during transaction processing VO on a message-oriented controller (e. g., 7605). . '. ,

\

TEL

TEL ISSUED SINGLE USER. ABORT ON YOU

R15 - Subcode.

The user already has SBUFl at entry to TEl. This software check indicates a problem iii memory'
management of physical pool pages.

---,---~------------------~--~

Code: 80-01

Called From:

Message:

Registers:

Remarks:

Code: 80-02

i. oiled Fr(

Message:

Registers:

Remarks:

170 Appendix C

TEL

TEL ISSUED SINGLE USER ABORT ON YOU

TEL failed to get SBUF2 to read the assign/merge record. This software check indicates a problem
in memory management of pool pages.

TEL

TEL ISSUED SINGLE USER ABORT ON YOU

TEl failed to get SBUF2 for a GET. This is essentially the same as software check 60-01 (failed to
get SBUF2 for READAM). A TEl logic problem or memory management failure is indicated.

9031 138-2(9/78)

, Tabl~ C -: L ,.'cp-¥ .Sof~(Ha Check CodtH (coot,)
r--~-----------~~--~-----~~~~~---~-~~,--·------·--~------------------------________ ~~~' ~-~

Code = fii!-63

Called From:

Message:

Registers:

Remarks:

Code: 10-04

TEL,

TEL ISSUED SINGLE USER ASORTON YOU

SR4 - Contents of AM:lN K.

The assign/merge record is inconsistent with a user in the command file mode. AM:lN K (in the
assign/merge record) should always point past the command file, information, and it doesn't.

, Called From: TEL

Message~ TEL ISSUED SINGLE USER ABORT ON YOU

Registers: ,SR2 - The virtual page address through which TEL was trying to SAD (M:CVM).

Remarks: This softWare check indicates a pioblem in memory management or a logic problem in TEL which
causec:l, the user's map to be left "dirty" from a prevIous SAD (M:CVM).

Cedlt,; Ji.1 - (Trap Celt)

Remarks,:

Code: 82

Co II ed From:

Message:

Regi'sters:

Remarks:

Code: 83

Called From:

Message:

Registers:

Remarks:

90 31. 138-2(9/78)

INJTRCVR

TE.L OR CCI HAS TRAPPED

Reqlsters at time of trap.

tl\.e trap occurred while operating mapped, sieve, and with TEL-in-control set. The sub code is
the 'trap location.

SCHED

USER PROGRAM TOO LARGE FOR PHYSICAL MEMORY

RO - Pages freed.
R4 - Inswep user (S:ISUN).

RO > Sl:CORE. User got swapped out but now can't fit back in. Pages may be released but not re­
ported. The JIT in-core flag = O. (UH:FLG X'200'.)

OPSIO

INSUFFICIENT INFORMA nON AVAILABLE TO SWAP THIS USER

R2 - lOCO.
R6 - Command list address.
R7 - Function code.
04 - X'63'.

Insufficient data to complete function, follow-on function code invalid, or flags not set properly.
(Disk pack-only swappers.)

Appendi"x C 171

Code: 6A

Called From:

Message:

Registers:

Remarks:

Code: 68

Called From:

Messages:

Registers:

. Remarks:

Code: 68

Called From:

Message:

Registers:

Remarks:

Code: 78-00

Called From:

Message:

Registers:

Remarks:

172 Appendix C

Table C..,1. CP-Y Softvvore Check Coo&:; (cent.)

MM

ATTEMPT TO RELEASE VIA M;CVM FROM USER wlO PROPER PRiVILEGE

Rl - X'80 ' •
R5 - Address of top of dyoomic data or bottom of command.
R6 - Number of pages to release.
R7 - Virtval poge number.
SRI - Number of pages released.
SR2 - First page to release.
SR3 - Increment or decrement to next pogo.
SR4 - Link.
01 - CC.
02 - CC mask.

Virtual page outside of user's area (BUP-EUP) was obtained by an M:CVM CAL, but the user lacks
required privilege (X'80') to release it.

MM

ERROR IN SPARE BUFFER TABLES

\
~11 - Address in buffer subroutine within MM (T:GBUF, T:RBUF, etc.) which detected the error.

Usually due to bad input from the calling routine •

SWAPPER

ERROR IN SPARE BUFFER TABLES

R6 - BA (window page).
R 14 - Physical poge assigned to window.

Page mapped into window is not contained in the spare buffer pool.

MPSCED

SLAVE CPU INVOKED CRASH

R15, left halfword: Screech code passed by slavo CPU.
Rl5, right holfword: Slave CPU's processor number.

A slave CPU encountered a condition that requires a full system recovery.

90 31 13B-2(9/78)

I
Code: 18-01

Co lied FrOClt-!

Message:'

Remarks:

Code: 78-7F

Called From:

Message:

Remarks:

Code: 79

Called From:

Message:

Registers:

Remarks:
,

Code: 79·01

Called From:

Message:

Registers:

Remarks:

Code: 79-02

Called From:

Message:

Registers:

Remarks:

Code: lC

Called From:

Messoge:

90 31 138-2(9/78)

,- Tobie (-1. CP-V $oftVvtlre Check Code's (co;,t.)

ENTRY

SLAVE CPU TRAPPED WITH NO USER ASSOC~A TED
~.' ,.. ~

A slave CPU suffered a trap (~r issued a CAL) with no user associated.

If this situation occurs, the system will screech with a code of 78-00. The value X'780100nn' will
appear in the master CPU's R15 at the time of the crash ("nntl being the slave CPU's processor
number.)

MPSUB

MASTER CPU WANDERED INTO SLAVE CPU'S CODE

The master CPU somehow began executing code reserved for the slave CPU(s) in a multiprocessor
system.

ENTRY

~ONITOR COMMITTED A STACK TRAP

Registers at time of trap

Master bit on in PSD I overfl~v.:, underflow I or pointer to stack lost.

T:OV

MONITOR STACK TRAP

Registers at time of trap.

OSTACK overflow.

S5SIM

SIMULATORS COMMITTED TSTACK OVERFLOW

None.

This user has too many environments on his stack to simulate a non-existent instruction on a
Sigma 5 only.

AlTCP

ALTCP CALLED TO SERVICE A CAL. THAT DOESN'T BELONG TO ALTCP,

Appendix C 173

Registers:

Remarks:

Code: 93

Called From:

Message:

Registers:

Remarks:

Code: 94'

Called From:

~ssage:

. Registers:

Remarks:

Code: 95

Called From:

Message:

Registers:

Code: 9&

Called From:

Message:

Registers:

90 31 138-2(9178)

Tab!e C-l. CP-V Software Che,ck Codes (cont.).

None

ALLOCAT data (HGPs and TABLES) has been destroyed.

DPSIO, TSI0

TDV COMMAND ADDRESS DOESN'T POINT TO COMMAND LIST

Rl - O.
SRI - Command list address from TDV.
SR2 - TOV status.
02 - Command list pointer (S:BECL, RI).

lOP/memory failure; extraneous entry to TSIO/DPSIO not generated within CLIST.

DPSJO, TSIO

COMMAND LIST CLOBBERED DURING WRITE CHECK

SR 1 - Inco,rrect command I ist entry address •
SR2 - TOV status.
R12 - Orde't code from incorrect command list entry;

Canlt find seek or TIC within next five command list entries following error entry on write Or write
check. - ,

DPSIO, TSIO

UNRECOV~RA~LE .I/O ERROR READlNG USER'S J~T,

RI - Jnswap user number (S:ISUN).
R7 - OCT, index.
SRI - Command list address from TDV status.
SR2 - TDV status.

DPSIO, TSJO

UNRECOVERABLE I/O ERROR READING SHARED PROCESSOR

Rl - Inswap user number (S:ISUN).
R7 - OCT index.
SRl - Command list address from TDV status.
SR2 - TOV status.

Appendix C 174.1

T~ble· C...:1. CP-V Softv~re t~ee;k Codes (cont.)

Croe: FF-OO

CoHed From:800iSUBR

Message: OPERATOR INITIATED RFCOVERY

Registers:

Remarks:

RO - 11 (Sigma 5,6,7)
15 (Sfgma 9)

R 1 - unchanged or 0

Called from BOOTSUBR on a boot from disk when sense switch 3 is set.

174.2 Appendix C 90 3t 138-2(9/78)

Registers:

Remarks:

Table C~ 1. 'CP-V Software Check Codes (cont.)

R3 - Register field of CAl.
R6 - Fi~st word PliST.
R7 - Address of PliST +, 1..

'SRl - Code.
SR4 - Exit address (usually TRAPEXIT).

A CAll, 1 or CALl,2 wos passed to ALTCP but should have been handled by CALPROC.

Code: 7E - (Trap Cell)

Called From:

Message:

Registers:

Remarks:

Code: 81

Called From:

Message:

Registers:

Remarks:

Code: .8

Called From:

Message:

Registers:

Remarks:

Code: '81-00

Called From:

Message:

Registers:

Remarks:

INITRCVR

MONITOR HAS TRAPPED

Registers at time of trap.

Subcoc:le is trap location. For traps that occur ot locations less thon X '8000' (JOVVPA), the
15 cells preceding the trap location and the trap location are stored in the monitor JIT at
X'8DFO' - X'SDFF' • '

ALLOCAT

ALLOCATION BUFFERS CONTAIN INVALID WORD COUNT

.. R 1 - Stack number.
R2 - Stack count.

Either low core has been clobbered or someone has changed ALLOCAT's in-core data.

SCHIiD

AlLOCAT CLOBBERED ONE: OF THE AlLOCA nON BUFFERS

Rl -Stack index.
R3 - Stack count.

AlLOCAT end-oction hos discovered a discrepancy in the granule/cylinder stocks.

AllOCAT

AlLOCAT'S HGP CHAIN CLOBBERED

R7 - Invalid HGP chain address.
R9 - ALLOCAT internol link 'register.

ALlOCAT data (HGPs and TABLES) hal been destroyed.

--~----~
Code: 89 #~

Called From: ALLOCAT

Message: DATA CHECKSUM ERROR

174 Appendbt C 90 31 13B-2(9/78)

APPEt~DIX D. XEROX 5'60 i RE~iiOTE ASSIST S1 ATIOi~!

INTRODUCTION

The Remote Assist Station (RAS) and the associated routines
comprise the CP-V interface for on-line remote assistance
for both software and hardware analysts. This faci lity pro­
vides an on-line connection to the operating system without
requiring the use of any of the normal communications
equipment. The RAS user has access to ELLA for listing and
analyzing the contents of the system error log file (ERRFILE)
and to ANLZ and Delta for examining cra'sh dumps and the
runn i ng mon itor •

HARDWARE'INTERFACE

'The Remote Assist Station may be any ASCII terminal cap­
able of connecting to the provided data set (Bell 103A or

; its equivalent). The data set is connected to the Remote
Channel .. Interface of the System Control Processor. (See
the Xero'x",560 Computer Reference Manual, 90 30 76.)
To use the interface on-line, the REMOTE CHANNEL
sW'it(;h on the Xerox 560 System Control Panel must be in
fn~ Va position. This connects the remote channel to
address X'OB' on the MIOP in cluster zero, through which
the Cp.::y interface communicates. This address must be
SYSGENed as the Maintenance Control (MC) device. The
hardware performs character translation from ASCII to
EBCDIC (and vice versa) to make the terminal appear as
an EBCDIC device. The translation tables are depicted in
Table D-1. The left side of the table shows standard ASCII
characters. The corresponding entries in the,. right side of
the table show EBCDIC translation.

SOFTV/ARE'INTERFACE

CP-Y provides an on-line communications interfaceenab­
ling the remote analyst to log onto the Maintenance Console
much as if he were connected to a COC terminal !ine. The
interface is initiated at the Operator's Console (OC) by a
special form of the GJOB key-in after the RAS is connected
to the dial·~up modem:

IGJOB LOGON, MC

This key-in causes LOGON to print a salutation to the MC
resource requesting the RAS user to enter his account and
name. The RAS user must be explicitly authorized via Super
to use the MC resource. The following is an example of
such a Super authorization:

-C RAS, ASSISTANCE e

--O$PR=AO e

--OMMC=18

(required for running diagnostic
programs)

{authorizes on-line use of the MC
resource}

, ,

--OM9T=le (~:equired for mounting tape dumps)

-- e
-END@

LOGON verifies the OMMC authorization before it ac­
cepts the account and name, and wi II not a /low the user to
log on if he does not have this resource authorization.

If the user's account and name are accepted, the user is
logged on as a non-COC on-line user and LOGON exits to
TEL which issues a prompt for input (I).

PROCESSOR ~ESTRICTIONS
The MC authorization causes a :PROCS entry to be created
for the RAS user which restricts him to the following list
of processors:

ANLZ

Delta

ELLA

No other processors or programs, are allowed at the RAS.
Except for these processor restri ctions, TE L wi II c:'ccept most
of its commands (e. g., SET, PRINT, MESSAGE, QUIT,
GO). However, commands regarding terminal type and
status will be ignored.

COMMUNICATIONS RESTRICTIONS

The communications link to RAS uses a small resident
handler in conjunction with the hardwired micro-coded
controller to provide a terminal interface. Due to the
limitations of the hardware and size restrictions on the
software handler, some compromises have been made. The
following list outlines the major characteristics of the com-
munications interface: .

1. The MC device is a message mode device, requiring
either LINE FEED, RETURN, CONTROL X, or CON~
TROL H to end each input. LINE FEED and RETURN
generate an X'15' (NL) character. CONTROL X and
CONTROL H generate an X'08' (EOM) character whi ch
is used to cancel an input line so that the line may be'
retyped.

2. Although the RAS terminal is connected in full-duplex,
the MC device operates in half-duplex, echoplex
mode, allowing I/O transfer a line at a time in only
one direction. When a read is pending, characters
typed will be echoed to the print mechanism of the

Appendix 0 175

-Table D-J. ',A.SCII to EBCDIC Trafls;C!tc Toble.-

-

I
- ,-.,.

"Ascn, 4,. ,. EBCDIC . . i . --

0 I 2 3 4 5 6 7 .0. 1: • 2 3 4 5 6 7

o I NUL Di..E SP 0 @ p ,
:p 0 l/fl/t ~ ~0 ~ l/(l/(. -,00 10

-'r-

~ ~
A0/' 1)(, l;tt% ~~ 1 SOri DCI I 1 A Q 0 q I

OJ 11 FI Cl Vc~
l/(IX, /. v.:1/a IX ;Z IT 2 STX DC2 II 2 B R b r 2

02 12 7F
- 1-----

I/o ~I/a Ix ~x .~ 'Xx. :; ETX DC3 I 3 C S C 5 3
03 13

/ '" --,

Ix IX. V. ~I~ [;Z L/(T ~7
4 EOT DC4 $ 4 D T d t 4

04 14 V/r3

17.IX :/c ~;:? I/? IX I~ 5 ENQ NAK % 5 E U e v 5
09 I OA 6C

6 lACK 0~ /. ixl/a Ix Ix I/? SYN &. 6 F V f v 6
16 _ F6 C6

v.~ I/, p'LY: V. IX V. 7 BEl ETB I
7 G W w 7 9 07 17

8 as CAN (8 H X h x 8 CD 0 ~ ~~ v. x. I/,
~~ :y: v.:1~ V. ;;: .;;;: 9 HT EM) 9 I Y i y 9 05 19

x,;< /. /a;;?: [:Z X /. A LF'
SUB ..- J Z i z A 15 lA E9 Nl :

v. v: v< V-l/a Po lX V-B VT ESC + ; K [k t B OB LB

~:~ I/. ~I){ [;:? 17-I~ C FF FS < L \ I I C , I OC IC

~'~ /. V.I~ [X Ix V. D CR GS - = M) m l D
15 JD

E SO RS > N A- n E !~V. OE IE V. V.~ v.: ,X V.
F SI US / ? 0 - 0 DLE F V-OF V. IF V. 61 [7-I;;: V-b(V. 4A

~tes: (DUsed by Diablo Centaur terminal EOT/ACK protocol.

o Used to cancel line, echoes as -ee and reissues read unless Delta is in control in which case is input as OA (IF).

CD Causes previously typed character to be ignored (Rubaut character).

o Lower case input is echoed lower case, but translated to upper case for program input.

176 Appendix D

· terminal. If a read is not pending, (:.h:::.rw1i-.c.b typed
ore not echoed and are igno;ed.

3. The BRfAKkey may be depressed ot '~n/ time to i",­
dicate a BREAK signal. The .Me !1otidler c~::u~e's a
BREAK event.tobeissued tor the u~er ond counts,sue",:
cessive BREAKs. If the user issues four, $1,Jccessive.
BREAKs, the handler causes a CONTROL Y everit,
(i:e., an escape to TEL). The BREAK key cancels on,
current Vo operation to the terminal.

4. In order to detect fine drop or disconnectl input re­
quests wi I J time out in three minutes and output mes­
sages will time-out in 20 seconds. A failure to respond
to c read within three minutes causes the RAS user to
be logged off.

5. Records output to the RAS termin~1 have a maximum
size restriction of 140 bytes. Trailing blanks in on
output record are suppressed by the MC handler. Rec­
ords output through DCBs other thon M:UC have a
RETURN/LINE FEED appended to them. Records writ­
ten through M:UC must contain their own carriage
control characters.

6. The MC handler does not simulate tabs !'lor does it
affect pagination.

7.' lridividlJPJ chO(acteH ",'h>{ be erased- on input by typip:;
@ charaders fer each c{aracterJo be erased (e.'g.',
"ANE@LZ' results in~f'd'iLf'). "Complete !ines may

be erasej by'~nqing~he line'with. <;,ONr~OL X or
CONTkOL.H which cause's· the handler to echo

and to reissu~ the re6d that was in operation.

8. End-of-fi Ie condition is se~ upon receipt of ~-h<:: thi-ee
character sequence CONTROL Fe.

9. lower cos:; letters are echoed in lower case but are in~
put to the program as upper case.

10. When Delta issues a read, special action takes
place by the handler t·o simulate the Delt" activa­
tion character set. Specia! Activation characters
(CONTROL I") = /) should be immediately fol­
lowed by a RETURN or LINE FEED. For commands
which usually end with a RETURN, either a RETURN
or C! LINE FEED is valid. Communds which nvrmally
end in LINE FEED should be e:nded with CONTROL X
or CONTROL H. Line erasure is effected by ending
the line of input with? RETURN.

Appendix 0 177

ERRFIU5 is a keyed file 'bui It and vpdated by ERR:FIL for
use by diagnostic programs. The file contains one record
for each error entry in the file created by ERRLQG.- "

yyOddd js tHe Jul iar.l date in packed decimal.

hhmm j"s the time (hours and minutes) in EBCDIC.

The keys for this file contain the Julian date itt packed
decimal, the time of the error in EBCDIC, and a sequence
number for errors with the same time tog: This sequence
number is reset to zero for each entry with a new time tog.
The format of the key is

n is the sequence number.

The first record of ERRFIlE is the key of the last record in
ERRFILE and has a key of zero.

08 yy Od dd

h h m m

n

where

08 is the number of bytes in the key.

While copying records into ERRFILE, consistency and error
checks are made on the input data. If any errors or in­
consistencies are found, II copy error" records are written
and a "copyerror" counter in the summary record is in­
cremented. The error and consistency checks, recovery
actions taken, and the format of the copy error records are
described below. The terminology used in the error record
formats is defined in Table E-1.

Term

Account

AIOCC

AIO Status

Alternate I/O Address

Bytes Remaining

Consecutive, Keyed, Random

Count of Entries Identical to
Previous Entry

Count of Entries lost

Current Command Doubleword

CPU Address

178 Appendix E

Table E-l. Error Record Terminology

Meaning"

The doubleword used to identify a user's collection of files.

A 4-bit field representing the condition codes as returned by the hardware
in response to an AIO instruction.

A 16-bit field representing the status as returned by the hardware in response
to an AIO instruction.

A 16-bit value representing an alternate physical I/O address by which a
dual-access device can be referenced.

A 16-bit field representing the Remaining Byte Count (RBC) field as returned
by the hardware in response to a TDV instruction.

Methods of organizing user files in CP-V (refer to the CP-V/BP Reference
Manual, 90 1764).

The number of error log records wh ich are identical to one previously logged
for identical reasons (excludes time records).

The number of error log records lost when logging becomes temporarily im­
possible for any reason.

A 64-bit value representing the command doubleword currently being pro­
cessed for a device (indicated by the TOV status DW).

Hardward address of CPU performing the function (meaningful onry for
multiprocessing).

Sigma 6 and 7-0

Sigma 9 - port number

Xerox 560 - basic processor address

Term

Caflerrs'Address

OCT Irldex

OCT Index of Symbiont Device

Effective Address

Error Subc~e

File Name

Granule

HIO CC

HIO Status

I/o Address

I/O Count

Julian Day

length

LMSCC

Memory Status Words
(Sigma 9 only)

T~ble E,,:,l. Error R~~ord TerminoIQ9y{cont.)

Meaning

,: :;The address back to which the error ',logging routine is returned wh~n logging
, 'is complete; used in isolatIng :spftware 'faults. ' '

The,8-bit value indicating the orele; in'which the device is configured into the
, system (at SYSGEN).

The a-bit value indicating the order in which the device associated with the
symbiont is configured into the system (at SYSGEN).

A 32-bit value representing the final address computed for the instruction
pointed to by the instruction address (IA) in the PSD.

An a-bit field indicating which of several types of file inconsistencies has oc­
curred (see CP-V/BP Reference Manual, 90 1764).

The TEXTCname used to identify a collection of user data on secondary storage.

The unit of secondary storage allocation equal to 2048 bytes (usually 2 sectors).

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware in response to an HIO instruction.

A 16-bit value representing the status as returned by the hardware in response
to an HIO instruction. ' '

A 16~it value representing the physical I/o address •.

A 32-bit value representing the number of SIO instructions executed for the
device.

A 16-bit value representing the Julian day of the year (e. g., March 1 would
be represented as X'30r) when the error was IOSged.

A a-bit value in the second byte of the error log record representing the num­
ber of useful 32-bit words contained in the error log record. It includes the
first word in the count.

The condition codes obtained when fetching a location via an LMS (Load'Mem­
ory Status) instruction. The condition codes indicate whether or not a parity
error occurred during the fetch.

Each word is a 32-bit value representing data returned by the hardware in
response to an LMS instruction.

Appendix E 179

Term,

MFJ (Sigma 6 er 7enly'

Mode

Medel Number

Number ef Parity Errors

Primary I/O Address

PSD

Rea I Add ress

Recovery Count

Relative Sector Address

Relative Time

Relative Time Resolution

Retries Remaining

Retry Request -

Screech Code

180 Appendix E

Table E-l.· Error Record Terminology (cent.)

MeaninQ

A 4-bit value 'repre~enting the current'~tate of the memory fault indicators
return~d by the hardware in respc:ms'e to' an RD instruction. All memory fault
indicators will be reset.

A 16-bit value representing the manner in which the file was last referenced
(see Cp-V/Sp Reference Manual, 90 1764).

A 16-bit value representing the model number assigned by Field Engineer­
ing to uniquely identify peripheral devices (e. g., 7242 would be represented
as X'7242').

A 16-bit val ue representing the number of bad locations' causing memory parity
errors (only the first 14 bad locations are entered in the log if the number of
errors is greater than 14).

A 16-bit value representing the physical I/O address by which a device can
be referenced (see Alternate I/O Address).

A 64-bit value representing the program status doubleword.

A 32-bit val ue representing the actual memory address (in a mapped syste~,'
this is the same as the address in the JA field of the PSD).' .

An a-bit value initialized to zero at system initiali'zation and incremented by
the v,al ue one for every system recovery.

A sector is 256 words. Each sector orf a' gtven device is numbered zero through
device end. CP-V maintains file p()int~rs by"relative sector number, thereby
simplifying the logic necessary to ciddt~ss.different devices.

A 32-bit value representing milliseconds since midnight. Resolution is 2 msec.

An 8-bit value, n, such that actual relative time resolution = 2 msec. (e. 9.,
n = 1 for a reselution of 500HZ or 2 msec.).

An 8-bit value representing Retry Request minus the number of entries at­
tempted. The range is between Retry Request and -1. A value of -1 indicates
the operation was terminated due to retry count rundown.

An 8-bit value representing the maximum number of retries after which a device
error is returned to the requester. This value is obtained from the requesterls
DCB.

The code used by CP-V to identify the system failure which has occurred.

'Table E-1. Error Record Tf!rmii1olog}' (cont.)
r-------------------------~----~---,~

Terf'!l . ;

Screech Subcod'e

Seek Address

Sense Information

SIO CC

SIO Status

Site Identification

Subbh&nnel Status

Symbiont File

TOVCC

TOV Current Command OA

TDV Status Doubleword

TIO CC

T10 Status

Trap CC

Meaning

",;~n a-bit field identifying which type of a specific anQ s,imi lar set of system
failures has occurred. (See ,Software check codes in t,he CP-V/OPS Reference
MQriuQl, 90 1675.)" .

The physical disk address las~ used to access this device.

The diagnostic information returned from the device as a result of sending a
"sense" order to the device.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes
as returned by the hardware in response to an SIO instruction.

A 16-bit value representing the status as returned by the hardware in response
to an SIO instruction.

A 64-bit field containing the site 10 from the SYSGEN :MON card left justi­
fied with blanks on the right.

An 8-bit field indicating which of several types of system initialization was
used. See the SYSTEM STARTUP error record (type X'18 1

).

. .
The status of the I/O subchannel received from the hardware as a result of a
TOV instruction.

A CP-V system specicrl file for buffering data between .. the CPU and slower
spe~d line printers, . card punc~ers,' etc.

,. A,,~:-bifvalue (bits 0-3 of designated byte) representing the condition codes as
.. r~~\J~ned by the hardware in respohse to a TID instruction.

A 24-bit field representing the current command doubleword address used in
obtaining the device status with a TOV instruction.

A 24-bit field representing the subchannel status, as current co~mand double­
word, device status, and byte count as returned by the hardware in response to

, a TOV instruction.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware in response to a TID instruction.

A 16-bit value representing the status as returned by the hardware in response
to a TID instruction.

A 4-bit value (bits 0-3 of designated byte) representing the condition codes as
returned by the hardware when certain traps occur.

Appendix E 181

Term

Trapped Instruction

Type

Un i t Address

Unit Type

User ID

User Number

Version

Volume Serial Number

Year

READ ERROR

Tabl e E-l. Error Record Ienni hotpgy -(cont •)

Meanins

,A,.32-bit value representing the contents of,the location pointed to by the
j-nstructi:<>n address (IA) in 'the PSD.·

An 8-bit value in the first byte of the error record which identifies the type
of record.

A 6-bit value (bits 2 - 7 of designated byte) representing the address by which
a processor can be referenced; the value is composed of a 3-bit cluster number
followed by a 3-bit unit number.

An 8-bit value specifying the type of processor. Bit 0 of the designated byte
indicates the presence of the processor in the current operational configuration
(0 = present, 1 = not present).

A 16-bit value which is a unique number assigned by the system to the partic­
ular job or on-line session.

, An 8-bit value which is the index into internal system tables used to access
us~r specific information.

The version identifier of the system running (i ~e., ADO, BOO, etc.). This field
is one byte in length. The letter of the version is stored in the first four bits
and the number of the version is stored in the second four bits.

A 4- or 6-byte field supplied by a user to identify ,eHner' a tape or private
pack.

A 16-bit binary value representing the current year minus 1900 (e.g., 1973 is
represented as X'49 1

).

End Read Error

If the condition codes set by T:RDERLOG indicate a read
error, a copy error record (Read Error) is written and copy­
ing of the record is attempted. If inconsistencies are found
in the record, a copy of the bad record is placed in the
ERRFILE fi Ie, followed by the End Read Error record. If no
inconsistencies are found, the record is processed norma lIy
and the Read Error record remains in the ERRFILE fi Ie. The
record format:,; are

word 0

word 1

Read Error

word 0

word 1

182 AppendIx E

ERRLOG RECORD LENGTH ERROR

If the length of the ERRLOG record is greater than 64 words, a
copy error record followed by the ERRlOG record is written
on ERRFIlE. No attempt is made to copy this record in the
detailed format. The record format -is

word 0

word

I b , 2 j I.
"

word 2

INCORRECT TIME

If the time of an entry is out of sequence, i. e., if it is
earlier than the time of the last record and the data has not
changed, a copy error record is written on ERRFILE followed
by the ERRLOG record. The time of this entry is then used
for the key and processing continues. The record format is

word 0

word 1

word 2

where index is the displacement withirfthe ERRLOG record
of the first word of erroneous ent&y:- '

ILLEGAL ENTRY TYPE

If the entry type is not one of the legal types, a copy error
record followed by the ERR LOG record is written on ERRFILE.
No attempt is made to copy the remainder of the record.
The record format is

word 0

j word 1

L ,I .. .,:.
Reloti~e time: I

9' 10 11112 13 14 15116 17 18 19120 21 22 23 24 25 26 27128 29 30 31

word 2

where index is the displacement within the ERRLOG record
of the first word of erroneous entry.

Note: Errors that occlJrwhile booting hove (j time tqg cf
24XX but the keys d these record::; contain'the cur­
rent date and 0011 for the ,time"

If'read or write errors are de.tHcted while reading or writing
'ERRFILE o'nd SUMFIlE, they are ignored.

''M1enever I/O ~rrors or certain unusual conditions occur,
an entry will be made into the ERRLQG fi Ie. This entry
will conl'ain any inforn:'ation;,pertinent to the condition.

Word 0 of each entry will have a code indicating which
error or unusual condition is present along with the number
of words in the entry (including word 0). Time (hhmm) and
Device Name (yyndd) are in EBCDIC.

There are no errorlog entries for the fol lowing two interrupts._

MEMORY FAULT INTERRUPT

The Memory Fault Interrupt (MFI) is triggered when an error
is detected during a memory access by either the CPU or an
lOP. If the MFI is triggered by the CPU, a parity error trap
will also occur unless the error is a Loop Check Parity error
or Overtemperature condition. The parity error trap routine
performs error recovery, logs the error, and clears the MFI
to avoid duplicate processing. The MFI service routine
therefore expects to only handle errors detected during an
lOP memory access and Loop Check and Overtemperature
errors. The Loop Check and Overtemperature errors are
processed by the memory parity programand the system re­
covery program is entered with code X'23'. The other er­
rors are logged by the device handler, which also performs
the requ ired recovery •

PROCESSOR FAULT INTERRUPT

The Processor Fault Interrupt is not enabled in CP-V. Errors
that cause this interrupt in a monoprocessor system are han­
dled by the I/O Interrupt Routines.

SIO FAILURE

This record is logged when CCl and/or CC2 are set after
~~cution of the SIO instruction.

word 0

word 1

word 2

I SIO:tatus I va o~dress I
o 1 2 3 \., 5 6 7 8 9 10 ,,112 13 14 15 16 17 18 19! 20 21 22 23 2. 25 26 V 128 29 30 31

AppendIx E 183

· word 3

word 4

word 5

TIME OUT

This record is logged when the I/O interrupt does not occur
within a specified time period in response to an I/O
instruction.

word

word 2

word 4

word 5

words 6 and 7

Current command
-

doubleword
o 1 2 31~ 5 6 718 9 10 11112 13 I~ 15116 17 18 19120 2122231242526 2712829 30 31

word 8

184 AppendIx E

word 9'

words 1 Q.and 11 .

Volume serial number

o I 2

word 12

UNEXPECTED INTERRUPT

This record is logged when an interrupt, other than an at­
tention interrupt, is received from a known device for;.
which no I/O operations have been started by the syst~~"::

word 0

Model number

word. 1

:
. Relati~e tj.m~· : .~.. ' I

5 6 78 9 10 11112 13 I~ 15;16171819120 21222324 25 ~6 27128 29 30:;1

word 2

word 3

DEVICE ERROR

This record is logged when general analysis of the status re­
ceived from an AIO, TDV, or no indicates an error which
resulted from the I/o operation. For on-line diagnostic I/O,
this information is returned in the STATUS area defined by
M:DOPEN with the type code X'14' for normal completion.

word 0

word

word 2

I
b,Sj!4It1

word 3

word 4

word 5

~ords 6 and 7
, ,>

Current command

doubleword

o 1 2] I 4 , 6 7 I 8 0 10 III 12 I, 14 IS 16 17 II "I 70 21 22 23. 2' 25 26 27118 ~ 30]1

,word 8

word 9

words 10 and 11

Volume serial number

(Six characters for I Original I Current
ANS topes) function code function code

o 1 2]14 S 6 718 9 1011112 13" 1,116 " II 19120 2122231242526 2712B 29 30 31

word 12

SECONDARY RECORD FOR DISK PACK, RAD, AND
TAPE

This record is generated as a result of a previous device
error and contains device status which corresponds to the
information contained in the Device Error record (type
X'15') preceding this record.

word 0

word.1

words 2 and following

Sense information (left justified)

Device --- Length (in bytes)

7242 10
Disk A, B 16 _._-
1600 bpi tape 6
9T tope 1
RAD 3

0123'.56 7 • 9 101111213" 15116 1118 1920 2' l.ll'l,' lS 16 27'28 29 30 3'

The va address links the secondary record to the cor­
responding device error entry.

SYSTEM STARTUP

This error is f099ed at system initi,?lization and at every
recovery.

word 0

word 1

word 2

word 3

where

Recovery
count

CPU address

screech code and screech subcode are defined in
the CP-V/OPS Reference Manual, 90 1675.

recovery count is set to 0 for initial startup as de-
fined by startup types 1, 2, or 3 below.

AppendIx E laS

s~cifje's the type. of startup.

2 - ·PO·boot with files

3 - System d~vice boot (no rec'Overy).

4 - System recovery

5 - Operator recovery

6 - Secondary CPU startup

7 - Secondary CPU shutdown

(For type 6 and 7, screech code fields and re­
covery count are zero.)

FILE INCONSISTENCY ERROR

This record is lo.gged H the"system detects files which are
inconsistent in fhat the' associated file links do not match
or are otherwise .incorrect. ~

word 0

word 1

words 2 through 9

File name

wor& 10 and 1

E
186 Appendix E

word 12

word 13

where

ORG is set to 1 for consecutive, 2 for keyed, and
3 for random.

MODE is set to 1 for IN, 2 for OUT, 4 for INOUT,
and 8 for OUTIN.

SOFTWARE-DETECTED SYMBIONT INCONSISTENCIES

This record is logged if the system detects files which are
inconsistent in that the associated fi Ie pcijnters do not match
or are otherwise incorrect.

o 78 1516 2324 31

WORD 0
TYPE LENyTH 0 SUB-

~)

X'18' X'041 CODE

.1 RELA TIVE TIME

CODe BAD VALUE FOR EXPECTED
C'O-C'F1 GENERALIZED DISK ADDR. 2

.'-

O· BEST FilE STARTING POINT
GENERALIZED DISK ADDR. 3

CODE

o - 1 RESERVED

2-6

7-9

OUTSYM; SUB CODE IS OCT INDEX
2 BAD BLINK
3 BAD FLINK
.. BAD RCC
5 BAD SCDBI
6 NEWQ INDICATES THAT ADDRESS

IS FOR A. DOWN DEVICE; WORD 2
MAY HAVE A VALID ADDRESS

COOP; SUB CODE IS A STREAM NUMBER
7 RECORD DOES NOT FIT IN DATA

BUFFER; WORD 2 IS A VALID
ADDRESS

8 BAD FLINK
9 RESERVED

90 31 138-2{9/78)

LOST ENTRY INDICATOR

This record is entered when buffering constraints make error
logging temporarily impossible. The newest entries ore lost.

word 0

word 1

DUPLICATE ENTRIES
. \

This record is logged:if duplicate' ~~ror log entries are
I generated.

"ford 0

word 1

POWER ON

This record is generated as a result of the power on trap
associated with location X'50'.

word 0

'Nord 1

Relative time

90 31 138-2(9/78)

CON FIGURA nON' RECORD,

This record 1s'l099~ at s¥st~~rn,·start~p.

word 0

word 1

word 2

word 3

addi ti ona I words

Words 2 and 3 may be repeated up
to four times. The po irs of words
will be in order by OCT index.
Multiple records may occur.

SYSTEM IDENllFICA Tl9N

30 31

This r~cord -is ente~ed at system startup and recovery and is
entered a~ter the CONFIGURATION RECORD (type X'21').

word 0

word 1

word 2

words 3 and 4

Site identification (in EBCDIC)

: .i

Appendix E 187

TIME ST N~P

This recor.:l is entered'once each hour on the hour.

word 0

word 1

Relative time

word 2

BAD GRANULE RELEASE

This record is logged if the granule being released contains
an invalid disk address or has already been refeosed {dual
allocation}.

word 0

word

o 1·1
: ,~ II' '2 I) I. I~ 16 I] Ie 19120 21 22 23 2' 2S 26 vile 29 Xl 31

word 2

188 Appendix E

, .

word 3 (if type code == 0)
------~----~----------~--------~

or

worJ 3 (if type code == 1)

REMOTE PROCESSING ERROR

This record is logged when an error occurs in the transmis­
sion of data to or from a remote processing workstation.

word 0

word 2

I" "I. ,. ,:. RB:F0GS ::,.. 1

\, nib ,j • b:" " , •• 1 m " " n:. ,,; ,,'111 ,. • "

wo~ds 5 and 6

..
Current command doubleword

where

type identifies the type of error log record.

length specifies the number of 32-bit words con-
tained in the error log record.

VO address is a 16-bit address representing the
physical VO address.

relative time represents milliseconds since mid-
night. Resolution is 2 msec.

RB:FLAGS specifies the contents of RB:FLAG at ·the
time of the error. RB:FLAG is described in the
CP-V/Data Bose Technical Manual, 90 1995.

workstation nome specifies the wor-kstation nome
(in TEXt format, left-iustified and podded with
blanks) if the terminal is logged on.

current command doubleword specifies the command
doubleword of the VOthat was taking place when

.he error occurred, For Xerox 7,670 RBTs, the,
current command doublf;word cont~ins the seCi:nd
command doubleword used to wri te 'fhe fext of an

. output message and is meaningful only for RPl -=--0,

. I, A, or B. '

RP1, RP2, RP3, and RP4 have specific meaning for
the type of remote workstation associated with the
record. The meanings are listed in Tables E-2
through E-7.

Table E-2. Xerox 7670 RBT - RP1, RP3, and RP4

RPI Value Meaning Corresponding RP3 Meaning Corresponding RP4 Meaning

1 First character in record not SOH. Current character position. Offending character.

2 Incorrect parity on SEL. Current character position. Offending character.

3 Incorrect block protect. Current character position. Offending character.

-"

,~ Third character' in record not STX. Current ,character position. Offending character.

5 RBBA T COMBUF or MPOOL unavai lable Meaningless. Meaningless.
for log-on.

.' "

~ "

6 Incorrect charact~r parity. " Current ch~racter position. Offendi ng character. . >
~

t::~--... --: •.
., :. ~

~ J! '
", '. '.

7 Record trailer character not ETX.
~-: r;<::;: ..

Current character position. Offending character.
~ ". ", . -

8 Incorrect block check parity. Current chO'tacter position. Offendi ng character.

9 Incorrect block check. Current character position. Offending character.

A Communication line time-out. Mean i ng less. Meaningless.

B NAK received. Response received reading for ACK. (RP3 and RP4 combine
to be a halfword).

-
C Garbled ACK or NAK. Response received reading for ACK. (RP3 and RP4 combine

to be a halfword).

AppendIx E 189

RP2 Value

o

2

3

4

5

6

7

8

9

A

B

Table E-3. Xerox 7670 RBT - RP2

Meaning' (Current Function' Code.)

Write ·c.a~d punch.

Write line·printer.··

Send ACK.

Write TOF (Blc:>ck protect = 0).

Write TOF (Block protect = 1).

Write SPACE (Block protect = 0).

Write SPACE (Block protect = 1).

Read card reader.

Write TOF (log-on).

Read card reader (special).

Read ACK card punch.

Read ACK /ine printer.

C Read ACK TOF (Block protect = 0).

D Read ACK TOF (Block protect = 1).

E Read ACK S'PACE (Block protect = 0).

F Read ACK SPACE (Block prot~ct = 1).

10 Write EOT.

11 Write DC 1.

12 Write ACK (speciaO.

13 Write NAK.

14 Write NAK (special).

15 Write BEL (on error).

;

. RPl
Value

, .
1

2

3

4

5

6

8

9

A

C

Table E-4~ IBM 2780 RBT - RPl and RP4
,

'" Corresponding RP4 '"
Meaning Meaning

,

Disconnect due to _

a. EOT on read. EOT

b. Use of 2780 on ENQ
IRBT only system.

Li ne ti meout • Same as RP2.

ENQ not received Character received.
on logon read.

No EOT after EOF sent. Character received.

..

a. ENQ in text mode. Character received.

b. No ENQ answer- Character received.
ing WACK. :. ...

,.
". /.

·f,,*,4;o·;~.~' ~~\I'.;:

c. ENQ answer to Character recetv~d. ,"

ACK of EOF.

NAK received.
. .

Character received.
-It

(]If,

CR~ fai/edon input. Last character
. ;;"..- CRCed •

, .,'
Unk~own respons'e Character received.
reading for ACK.

T rai I er character not Character received.
ETB or ETX.

Header character not Character received.
STX.

Table E-5. IBM 2780 RBT - RP2 and RP3

Value RP2 (Current Function Code) RP3 (Calling Function Code)

0 Disconnect • 'l' Software error - should not occur.

1 Write data. Write.

2 Send ENQ. Send ENQ (Wait).

3 Send ACK O. Read.

4 Send WACK. Send WACK (Wait).

190 AppendIx E

Value

5

6

7

8

9

A

B

c

2

3

4

5

6

7

8

9

A

B

c

Table E-5. IBM 2780 RBT - RP2 and RP3 (cont.)

RP2 (Currer1t"FuAcdon Code)
.,. ..;,.-

,
.'

Write data.

Send ENQ.

Read for ACK, ENQ, EaT (depends on RP3).

Read.

Send NAK.

Send ACK 1.

Send EOT.

Table E-6. IRBT - RPl and RP4

M~ning

Recove"rable block check error.

Cato$trophic block check error (NAK sent
in caSe of I ine error).

Communication line;t~l!Ie-out. .,
~

Reed for ENQ timed-out (logon).

Received ACK 0 instead of SIGNQN at logon.

Inappropriate line bid (not ENQ-master, not
ACK O-slave).

NAK received.

Read ti med out.

Incorrect CRe.

Trailer character not ETB.

Leader character not STX.

lost data.

Garbled ACK o-NAK.

RP3 (Calling Functipn Code)

Write EOF.

Request to output._

pal for i ~put •

logon.

Software error - should not occur.

Software error - should not occur.

Software error - should not occur.

Software error - should not occur.

Corresponding RP4 Meaning

Difference (mod 16) between expected
and received BCSs.

Differefjce, (mod 16) between expected
and rec~ived- BC&.

Same ~s Rp2.
"1-".'"

Same as RP2.

ACK 0

line bid received.

NAK.

Same as RP2.

last character CReed.

Offending character.

Offending character.

First character after IDLE.

First character of message.

Appendix E 191

Table E-7. IRST - RP'2arict-RP3

, ,oR P3:" (Co 11 i ng Func t i on Code)

o 'ph-connect.
.f ,.'. t

.·,':'~-9ft~re error - should not occur.
,or .. ~.: '.. .

. Write block. Write block - read block •

2 Write ACK~ Write AC K - read block.

3 Write block. Write block (Wait-a-bit) - Read special.

4 Write Wait-a-bit. Write Wait-a-bit - Read special.

5 Read block., Software error - shoul d not occur.

6 Send NAK. Software error - should not occur. t

7 Send ENQ. Logon as Slave.

8 Read for ENQ. Logon as Master.

9 ACK 0 to ENQ. Logon as Master after ENQ Read.

A Read logon record. Software error - shoul~ not occur.

B NAK logon record. Software error - shoulCl ?o·t occur .t

tlf eirors·~ith the same RPI code occur consec,.,tively, this code m~y '~ppear in the RP3 field for the '~cond .and subsequent "
consecutive errors, replacing another legal RP3 code. , :.

OPERATOR MESSAGE

This record is interjectedas the resultofan operator ERRSEND
key-in or by a diagnostic program. It is generally used to de­
scribe unusual conditions surrounding a particular .error.

word 0

word 1

word 2

'l , 2 3

Message from the operator in TEXTC
format. (Maximum size is 71 characters
p.lus the count byte.)

I/O ACTIVITY COUNT

This is recorded once per hour and at recovery.

192 AppendJx E

word 1

. word 2

addi tiona I words

o , :2 3

Words 2 and 3 may be repeated ,up to four
. ti mes. The po i rs of words wi" be in order
by OCT index. Multiple records may occur.

HARDWARE ERROR

This record is logged when a hardware error has been de­
, tected, the type of error being indicated by the Trap ce.

For Sigma 6 and 7, this record is generated as a resul t of

the memory poritr interrupt associated with locatlQn X'56 1
•

For Sigma 9 and Xerox 560 this record is gener.aJ~d'.iQs.Q re­
sult of the parity error trap associated with !<?cdtionX·\4C'.

word 1

words 2 and 3

PSD word 1

PSD word 2

o I 2 314 5 6 718 9 10 11112 13 14 ISI16 17 18 19120 2.1 22 2312-4 25 26 2712829 30 31

words 4- and 5

Reserved· for future use

'k O' I 2 314 5 6 718 9 !O 11112 I! Jt 15116 17 18. 19120 21222312425 26 Vl28 29 30 3~'

word 7

word 8

word 9

I ANLZ CC I
o I 2 314 5 6 7 8

Effe~tive virtual a~ress I
10 11112 13 14 15 16 17 18 19120 21 22 23 2-4 2S 26 27128 29 30 31

word 10

where

FIP indicates, when set, that a parity error occurred
while fetching the instruction (causing a trap 4C)
on a Sigma 9 or Xerox 560, or that a memory par­
ityoccurred (causing a machine interrupt using
location 56) on a Sigma 6 or 7.

.lAP indi cates, when set, that a parIty en'or occurred
due to an indirect address ·fetCh. Vlords"9 at)d'10"'
~HI-be zero in this case. .,

RBP indic;:atas, when set, that"O -parity error is present
. in the assoCiated R-block: re;giders. (Xerox 560
.. only.)

AN{Z" CC s~cify the addressing type for the
effective real address (words 9 and 10). If the
instruction is an immediate type, these address
fields will be zero. The ANLZ CC settings
are:

Bit 0 Bit 1 Bit 2 Bit 3

0 0 o Byte

0 0 Immediate, byte

0 o Halfword

0 o Word

0 Immediate, word

o Doubleword

o Direct ~~dressing

Indirect addressing

WATCHDOG TIMER

This record is generated as a result of the instruction watch­
dog tim'et' r'u~out trap associated with location X'46'.

word 1

11 :
:01231-45678 10 1I112 13 I" 1516 17 18 ,,120 2122232" 25 26 2712829 30 31

words 2 and 3

1 PSD word 1

PSD word 2
o I 2 31" S 6 718 9 10 11112 13 1" 15116 17 18 19120 21222312-425 26 VI28 29 lO 31

words 4 and 5

Reserved for future use

0- I 2 31<1 5 6 718 9 10 11112 13 14 15116 17 1819120 21 22 2312-4 25 26 2712829 30 31

Appendix E 193

word 6

word ?

word 8

word 9

word 10

where FIP, lAP, RBP, and ANLZ CC have the same mean­
ing as for the hardware error record (X'17').

INSTRUCTION EXCEPTION

This record is logged when program executions traps to lo­
cation X'4D' on a Sigma 9 or Xerox 560 due to an instruc­
tion exception condition.

word 1

words 2 and 3

PSD word 1

PSD word 2
o I 2 31. 5 6 71s 9 10 11112 13 1. 151i6 17 18 19120 212223124 2S 26 27128 29 30 31

words 4 and 5

Reserved for future use

o 1 2 3 r. 5 6 718 9 10 11112 13 1415116 17 18 19120 212223124252627128 29 30 31

194 Appendix E

word ?

t R.:al, address of t~pped I nstructi~n]
o 1 2.3145 6 7.18.910,,1121314151;61718 19i20 21222312415 2l> 27123 29 30 31

word 9

word 10

Effective reol address
9 10 ,,1 12 13 14 15116 17 18 19120 21.2231242526 i7he 29 30 31

where FIP, lAP, RBP, and ANLZ CC have the same mean-!
ings as for the hardware error record (X I 1?').

PFI PRIMARY RECORD

This record is logged when program execution is interrupted
to location X'56' on the Xerox 560 due to a Processor Fault
Interrupt condition.

word 0

word 1

MFI PRIMARY RECORD

This record is logged as a result of the memory fauft in­
terrupt associated with location X'5?' on a Sigma 9 or
Xerox 560.

word

XEROX 560 SECON DARY RECORD FOR POLL
INFORMATION

This record is fogged to record specific informatlon obtained
by issuing a POLL instruction subsequent to detecting hard""
wore errors. One record is produced per valid poll status
received.

456],89

word 2

where unit type has th~ following meanings:

- Bas; c Processor

2 ~' Memory Interface
' 0.

S.- Processor Interface

4 - Multiplexor lOP

5 - Rotating Memory Processor

6 - Not Used

7 System Control Processor

XEROX 560 MEMORY PARITY SECONDARY RECORD

This record is logged to record specific information returned
in response to an LMS instruction subsequent to detecting
hardware errors.

word 2

.0 31 13B-1(11/76)

word 3,

, ," M'emory .,~f~s word l' ,I
.L"..o '-,1~2""""'31j...,4--';"5-6--=-7'-1 8 :;;.. t(nd!l 13 t4 1~116 1~ 1,. 1';, zc 21,22 2312. 'L 2< "i2' " :00 JI

SIGMA 9 MEMORYPARITYSECON DARY RECORD

This record js',lo'gged ~s a result of the memory faul t inter­
rupt associated with loc'ation XI S7' or the memory parity
trap associated with location XI 4C on the Sigma 9 or
Xerox 560. This record follows record type XI 171 and
record type X'311.

word

1 2 3 14 5 6 7 8 9 10 1 d 12 13 14 15 16 17 18 19120 21 22 23 U 25 26 27128 29 30 31

word 2

word 3

Memory st~tus word 1 ': ,'" I'
1011112131415 16 17 1819120 2122232425262712829 3031

word 4

1,2 314 5 6 7 8 9 101111213141516171819120 2122232425262712829 30 31

wQrd 5· "

MEMORY PARITY SECONDARY RECORD

This record is logged to record specific information obtained
by scanning memory to attempt to isolate locations which
cannot sustain correct parity.

word 1

Appendix E 195

word 3
--~-----+-------------~------------~------

word 4

word 8

word 10

Contents of highJst location with, bad parity

ENQUEUE TABLE OVERFLOW

This record is logged when an Enqueue CAL has been re­
jected becous~ there are insufficient unused e'ntries in the
Enqueue tables.

word 1

I 22 23 24 25 26 27 28 29 JO 31

word 2

Entry count is the number of entries in the enqueue table
belonging to the specified user at the time the error Jog
entry was made.

196 Appendix E

PARTITIONED RESOURCE

This entry i$ logged when a resource is partitioned via the
SYSCON processor by the operator.

. ~

word 1

word 2

where

F=O for device entry.

F = 1 for controll er entry.

RETURNED RESOURCE

This entry is logged when ,G resource is returned from being
partitioned via the SYSCON 'processor by the operator.

word 1

word 2

~ 110 ~ddress I
10 11112 13 14 1516 17 18 19120 21 2223 24 25 262712829 JO 31

F=O for devi ce entry.

F = 1 for control I er entry.

APPEN'DU{ F. XEROX Sl£\'NDARD Oil.iEGr lAitGUAGE

INTRODUCTION
GENERAL

The Xerox standard object language provides a means of
expressi n9 the output of any Xerox processor in standard
format. All programs and subprograms in this object format
can be loaded by the Monitor's relocating loader. t Such a
loader is capable of providing the program linkages needed
to form an executable program in core storage. The object
language is designed to be both computer-independent and
medium-independent; i. e., it is appl icable to any Xerox
computer having a 32-bit word length, and. the same format
is used for both cards and paper tape.

SOURCE CODE TRANSLATION

Before a program can be executed by the computer, it must
be translate~ from;symbolic form to binary data words and
machine instructfons. The primary stages of source program
translation are'occomplished by a processor. However, under
certain circu~stances, fhe processor may not be able to trans­
late the entire source program d)rectly info machine 1anguage
form:

If a source program C:ontainssi~eolic:; forward references, a
single-pass processor such as t~e.~~rox Symbol assembler can
not resolve such references intprrid,chine language. This is be­
cause the machine language ~bj~efor the referenced symbol
is not establ ished by a one-po~s processor unti I after the state­
ment containing the forward ref.erencehas been processed.

. ,...... ·......t·
A two-pass processor, such~~s' the Xerox Meta-Symbol assem­
bler, is capable of making·:~ret.roactiven changes in the
object program before the obiect~code is output. Therefore,
a two-pass processor does not have to output any speCial

. object codes for forward references. An example of a for­
ward reference in a Symbol source program is gi'ven below~

y EQU $+3

CI, S z

LI, R z

z EQU 2

BG z

R EQU Z + 1

t Although a discussion of the object language is not directly
pertinent to CP-V, it is included in this manual because it
applies to some of the processors operating under CP-V.

In this ,~xample the operand $ + 3 is not (1 forward reference
h~cau~ethe assembler can evaluate it when processing the
source statementi~ which it appears. However, the oper­
and Z in the statement

CI,S Z

is a forward reference because it appears before Z has been
defined. In processing the statement, the assembler outputs
the machine-language code for el,S, assigns a forward ref­
erence number (e. g., 12) to the symbol Z, and outputs that
forward reference number. The forward reference number
and the symbol Z are also retained in the assembler's symbol
table.

When the assembler processes the source statement

1I,R Z

it outputs the machine-language code for LI, assigns a for­
ward reference number (e. g., 18) to the symbol R, outputs
that number, and again outputs forward reference number
12 for symbol Z.

On processing th~ source. statement.

Z Eau 2

the'asse'mbt'er again outputs symbol Zls"forward reference
number and al$o outputs the value, which defines symbol Z,
so that the relocating }i)ader will be able to satisfy refer­
ences to Z in statements CI, S Z and L1, R Z. At this time,
symbol Z IS' forward referen.<.:e ~umber (i. e., 12) may be
d~leted from th~ assemblerls 'symbol table and the defined
~~Iue of Z equated with the symbol Z (in the symbol table) .
Then" .subseque'nt references to Z, as in source statement

8G· Z

would not constitute forward references, since the assembler
could resolve them immediately by consulting its symbol
table.

If a program contains symbolic references to externally
defined symbols in one or more separately processed subpro­
grams or library routines, the processor will be unable to
generate the necessary program linkages.

An example of an external reference in a Symbol source pro­
gram is shown below.

REF ALPH

LI,3 ALPH

When the assembler processes the source statement

REF ALPH

Appendix F 197

it outputs the, ,symbol AlPH", in symbolic (EBCDIC) form, in
a deda~ation,:specifying that the symbol is an extern61' r~f­
erence. At t'his <.time, the assembler also assigns a dedara- '
tion name number to, thesymbo~ ALPH but does not output
the number.' The symbol and name number are retained in '
the assembler's symbol toble. '

After a symbol has bee~ declor,ed an exter'~al referen'ce, it
may appear any number of times in the, symbol ic subprogram
in which it was dedared. Thus, the use of the symbol
ALPH in the source statement

1I,3 ALPH

in the above example, is valid even though ALPH is not
defined in the subprogram in 'which it is referenced.

The relocating loader is able to generate interprogram I ink­
ages for any symbol that is dedared an external definition
in the subprogram in which that symbol is defined. Shown
below is an example of an external definition in a Symbol
source program.

DEF ALPH

lI,3 ALPH

ALPH AI,4 X'F2'

V/hen the ossel!lbler processes the source statement,

DEF A~PH

it outputs the symbol' AlPH, in~symbolic (EBCDIC:) form, in
a dedaration specifying 'that the symbol is 'an externatdefi­
nition. At this time, the assembler also assigns a declaration
name number to the symbol ALPH but does not output the'
number. The symbol and name number Pre retained in the
assembler's symbol table~'

After a symbol has been declared on external definition it
may be used {in the subprogram in which it was declared} in
the same way as any other symbol. Thus, if ALPH is used as
a forward reference, as in the source statement

LI,3 ALPH

above, the assembler assigns a forward reference number to
ALPH, in addition to the declaration name number assigned
previously. (A symbol may be both a forward reference and
on external definition.)

On processing the source statement

ALPH Al,4 X'F21

the assembler outputs the declaration name number of the
, label AlPH (and an expression for its value) and also outputs

the machine-language code for AI,4 and the constant X'F2'.

OBJECT LANGUAGE FORMAT

An object language program generated by a processor is out­
put as a string of bytes representing "Ioad items". A load
item consists of an item type code followed by the specific
load information pertaining to that item. {The detailed format
of each type of load item is given later in this appendix.}
The individual load items require varying numbers of bytes

198 Appendix F

, for their representation" depending on the type and speci fie
" ~ont~rif of each item. ' A ,group of 108 bytes, or fewer, com­

prises a logical recQ.rd. A load item may be continued from

one I~gical record to the next.

The ordered set of logical records that a processor generates
for a program or subprogram i$ termed on "object modul en.
The end of an object module is indicated by a module-end
type code followed by the er'ror severity level assigned to
the module by the processor.

RECORD CONTROL INFORMATION

Each record of on object module consists of 4 bytes of con­
trol information followed by a maximum of 104 bytes of load
information. That is, each record, with the possible excep­
tion of the end record, normally consists of 108 bytes of
information (i. e., 72 card columns).

The four bytes of control information for each record have
the form and sequence shown below.

Byte 0

Record Tlpe Mode Format

01 1 ' 1 0

0 . 1 2 3 4 5 6 ·7

Byte 1

Sequence Number

o 7

Byte 2

Checksum

o 7

Byte 3

[Record Size

o 7
Record Type specifies whether this record is the lost

record of the module:

000 means lost
001 means not lost

Mode specifies that the loader is to read binary infor-
mation. This code is always 11.

Format specifies object language format. This code is
always 100.

Sequence Number is 0 for the first record of the module'
and is incremented by 1 for each record thereafter,
until it recycles to 0 after reaching 255.

Checksum is the computed sum of the bytes comprisi n9
the record. Carries out of the most significant bit
position of the sum ore ignored.

Record Size is the number of bytes {including the record
control bytes} comprising the logical record (5 :s record

size::: lOS}. The record size will normally be 108 bytes
for all records except the lost one, which moy be fewer.
Any excess bytes in <;1 physical reco~d are ignored.

LOAD ITEMS
"

Each load item begins with a "Control byte that indicates the
item type. In some instances, certain parameters are also
provided in. the load item 'control hyte. Inthe following dis­
cussion, load items are categorized according to their function:

1. Declarations identify to the loader the external and
control section labels that. are to be defined in the
object module 'being looded.

2. Definitions define the value of forward references,
external definitions, the origin of the subprogram being
loaded, and the starting address (e. g., as provided in
a Symbol/Meta-Symbol END directive).

3. Expression evaluation load items within a definition
provide the values (such as constants, forward refer­
ences, etc.) that are to be combined to form the final
value of the definition.

4. loading items caus.e specified information to be stored
into cQre memory.

5. Miscellan'eous items comprise padding bytes and the
module-end indicator. ,

DEC LA RAT t.O N S

In orderfor the loader to provide the linkage between subpro­
grams, the processor must generate for each external refer­
ence or definition a load item, referred to as a "decla rati on II ,
containing the EBCDIC code representation of the symbol
and the information that the s·ymbol is either an external ref­
erence or a definition (thus, the loader will have access to
the actual symbolic nome).

Forward references are always internal refereric~s within an
object module. (External referenc~s are""nev~r 'considered
forward references.) The processor does not generate a dec'·
laration for a forward reference as it does for externals; how­
ever, it does assign name numbers to the symbols referenced.

Declaration name numbers (for control sections and external
labels) and forward reference name numbers apply only within
the object module in which they are assigned. They have no.
significance in establishing interprogram linkages, since
external references and definitions are correlated by match­
ing symbolic names. Hence, name numbers used in any
expressions in a given object module always refer to symbols
that have been declared within that module.

The processor must generate a declaration for each symbol
that identifies a program section. Each object module pro­
duced by an assembler is considered to consist of at least
one control section. If no section is explicitly identified
in the source program, the assembler assumes it to be a
standard control section (discussed below). The standard
control section is always assigned a declaration name

number of O. AI! other control sections (i. c., produced ~y
a proces~or 'copchle of declaring other control sections) ore
assigneQ dec.laration name numbers (1, 2, 3, etc.) in the
order of their appearance in the,spurce progr.om.

In the load items discussed below, the accesscod~, pp, des­
ignate's the memory prefect·ion Class that, is tobe associated
wHhthecontrolsection. ·The. meaning'of thi's code is given

. below.,

pp Memory Protection Feature t

00 Read, write, or access instructions from.

01 Read or access instructions from.

10 Read only.

11 No access.

Control sections are always allocated on a doubleword
boundary~ The size specification designates the number of
bytes to be allocated for the section.

Declare Standard Control Section

Byte 0

Control byte
o o o 1 o

o 2 3 4 5 6·

Byte 1

'SiZE: (bits. 1 through 4)
o

o 2 3 4 6

Byte 2

I· Sixe (bits 5 through 12)

o

Byte 3

Size (bits 13 through 20)

o

7

7

7

7

This item declares the standard control section for the object
module. There may be no more than one standard control
section in each object module. The origin of the standard
control section is effectively defined when the first reference
to the standard control section occurs, although the declara­
tion item might not occur until much later in the object
module.

tllRead" means a program can obtain information from the
protected area; "write" means a program can store informa­
tion into a protected area; and, lIaccess" means the compu­
ter can execute instructions stored in the protected area.

Appendix F 199

This capability is required by on~-pos5 ?r.<?ce'ssors, since,
!h,: s.ize'of a sect:pn cannot be determJ,ned until all of
the lood infOJimoti'on for -thcit section hm 'been generated by
the process'ot-.

Declare NOr'lstand'ord Control Section

Byte 0

Control byte
o 1 o~ o o

o 2 3 4 5 6 7

Byte 1

I ~ccess c~e I Size (bits 1 through 4)
o o

o 2 3 4 7

Byte 2

Size (bits 5 through 12)

o 7

Size (bits 13 through 20)

o 7

Th is item dec lares a control sectIon other than standard con­
ti'ol section (see above).

Declare Page Boundary Control Section

Byte 0

Control Byte
0 1 1

o 2 3 4

Byte

5 6

Size (bits 1 through4)
0 0

o 2 3 4 5 6

I Byte 2
Size (bi ts 5 through 12)

o

Size (bits 13 through 20)

o

0

7

7

7

7

This item declares a nonstandard control section beginning
on a memory page boundary.

200 Appendix F

Declar~ Dummy Section,

Byt~Q' ',.

&{':. ~. " Control .at!e
0 0 1

O:~·"" 2 3 4

Byte 1

First byte of name number

o

Byte 2

0

5

Second by'te of name numbert

0

Byte 3

o
6

]
7

7

7

Access code 1 1 Size {bits 1 through 4}.
p p I 0 0 I
0 2 3 4 7

Byte 4

Size. (bits 5 thtCiJugh 12) I
o 7

Byt~ 5

Size (bits 13 through 20)
4!.~.

o 7

This item comprises a declaration'for a dummy control sec­
tion. It results in the allocation of the specified dummy
section, if that section has not been allocated previously
by another object modyle. The label that is to be associ­
ated with the first location of the allocated section must be
a previouslydeclored external definition name. (Even
though the sburce program may not be required to explicitly
designate the label as an external definition, the processor
must generate an external definition name declaration for
that label prior to generating this load item.)

Declare Root Dummy Section

Byte 0

Control byte
o o

o 2 3 4

Byte 1

o o
5 6 7

First byte of nome number

o 7

tlf the module has fewer than 256 previously assigned name
numbers, this byte is absent.

90 31 13 B-1 (11/76) •

Byte 2

.f ==========_s_e=c=o:n=d=_b...;Y:t=e=_o_· "",f_ _n_a....;;,_m ___ e_._n=~=cn_'-:-'b=,:e=r=t=======:== __ J~ ...
o '~. 7

Byte 3

o o
- Size (bits 1 through 4) -,

o 1 2 3 4· 7

Byte 4

Size (bits 5 through 12)

o 7

Byte 5

Size (bits 13 through 20)

o 7

This item comprises a d:edDration for a d~mmy control sec­
tion that is to reside in the ROOT segment. It results in the
allocation of the spedfi~d.dummy section in the ROOT seg­
ment, if that section has n'a"f.been allocated previously by

. another object module 0 The label that is to be associated
with the first location of the a lIocated section must be a
previously declared external definition name. (Even

200-1 AppendixF

though the so!-,!rc~ program may not be req uired to expl icitly
designate thelCibel as an exter;lal definition, the processor
must gener~te"an ~:~~~rnal defi'n,itipn,natoe, de:i'larat iOn fo~ "J

that labe·1 prior tq S,enerating this load it~~.)

D'~cloreExt¢rnal Definition Nome

Byte 0

10
Control by:te

1\ 0 0 0 0 0

0 2 3 4 5 6 7

Byte 1

I Nome length, in bytes (K)

0 7

Byte 2

First byte of name I
o 7

Byte K+1

I last byte of nome

o 7

90 31 13B-1(11/76}

This item declares a label (in EBCDIC code) that is a~'ext€"vr­
nal definition within the current object module. The nome
may not exceed 63 bytes in length.

Declare Primary Extern~1 Ref;rence Nome

Byte 0

10 0

Control byte

o o 0 o
0 2 3 4 5 6 7

Byte 1

1
Nome length (K), in bytes

0 7

Byte 2

I First byte of nome

0 7

,Byte K+l '

"'I J-----~-=.'=--' ___ l!_;a_s_t_b...!,y_t_e_o_f_n_a_m_e ______ . ~

o 7

This item declares a sy~bol (in EBCDfC code) that is a pri­
mary external referenc~ within the current object module.
The name may not exceed 63 bytes in length •.

A primary external reference is ccpoble ot eauslng the loader
to search the system I ibrary for a correspOnding external
definition. If a corresponding external 4efinition is not
found in another load module of the prograM OF in the system
Ilibrary, a load error message is outpuJ and the fob is errored.

Declare Secondary External Reference Name'

Byte 0

10
Control b;tte

01 0 0 0 0 J
0 2 3 4 5 6 7

Byte 1

Name length, in bytes (K)

o 7

Byte 2

First byte of name

o 7

90 31 13B -1(11/76)

Byte K+l

E ,,~, ' I
7

This item de'dares, 0 symbol (in EBCDiC code) that is a sec­
ondary external reference within the current object module.
The name may not exceed 63 bytes in length.

A secondary external reference i's not capable of causing the
loader to search the system library fora corresponding exter­
nal definition. If a corresponding external definition is not
found in another load module of the program, the job is not
errored and no error or abnormal message is output.

Secondary external references often appear in I ibrary routines
that contain optional or 01 ternative subroutines, some of which
may not be required by the user's program. By the use of pri­
mary external references in the user's program, the user can
spec ify that only those subroutines that are actually required by
the current job are to be loaded. AI though secondary external
referencesdonatcause loading from the library, theydocause
I inkages to be made between routines that are loaded.

DEFINITIONS
When a source language symbol is to be defined (i .e.,·.~qtJa­
ted with a value), the processor provides for s~ch g value by
generating an' object languag~ expression to b~'evaluated by
the loader. Expressions are of variable length, and terminate
with an exp'ression-end control byte (see II Expression Evalua­
tion~' in this appendix). An expression is evaluated by the ad­
dition or subtraction of values specified by the expression.

Since the foader must derive values for the origin and start­
ing address of a program, these also require definition.

Origin

Byte 0

10
Control b:ttc

0 0 0 0 0

0 2 3 4 5 6

This item sets the loader's load-location counter to the
value designated by the expression immediately following
the origin control byte. This expression must not contain
any elements that cannot be evaluated by the loader (see
"Expression Evaluation" which follows). -

Forward Reference Definition

Byte 0

Control b;tte
o o o 1 o o

o 2 3 4 5 6

01
7

7

Appendix F 201

Byte 1

o
Byte 2

o

ii' First byte,~~f reference number

. Second byte of reference n~'mber I
7

This item defines the value (expression) for a forward refer­
ence. The referenced expression is the one immediately
following byte 2 of this load item, and must not contain
any elemen~s that cannot be evaluated by the loader (see
"Expression Evaluation" which follows).

Forward Reference Definition and Hold

Byte 0

10
0
Byte 1

o
Byte 2

[
o

0
Control b;tte

0 1 0 0

2 3 4 5

First byte of reference number

: S'econd byte of refe~ence number '"
..... ;.

0 01
6 7

7

7

This item defines the varue' (expression) for a forwcird r~fer­
ence and notifies the loader that this value is to 'be retd.ined
in the loader's symbol table until the module end ii enooun- '
teredo The referenced expression is the. one immediaf'ely
following the name number. It may contciin'values th(;lt have
not been defined previously, but all such vtil·ues'mp'stbe
available to the loader prior to the module ~~: '

After generating this load item, the processor' m~ed nof'retain
the val ue for the forward reference, since that responsibi I ity
is then assumed by the loader. However, the processor must
retain the symbol ic name and forward reference number
assigned to the forward reference (until modure end).

External Definition

Byte 0

10
Control b;tte

01 0 0 0 1 0

0 2 3 4 5 6 7

Byte 1

I First byte of name number

0 7

202 Appendi x F

Byte 2

E ____ S~e'cond byte of ~_o_m_e_' _n_u_m __ b_e_rt ______ -4

o 7

This item s:I.eIines the ,,:.-¥QWe (expression) for an external
definition name. -The name number refers to a previously
declared d~finition nome. The referenced expression is
the one immediately following the name number.

Define Start

Byte 0

10
Control bz:te

1 I 0 0 0 1 0

0 2 3 4 5 6 7

This item defines the starting address (expr~ssion) to be',used
at the completion of loading. The refererced e:kpression is
the one immediately followi.ng the controLbyte •.

EXPRE~SIO" IV AlUATION " . ~. ;,. flo .:c.

A processor must generate artobiect language expression
whenever it nee.ds to cO-'\lm~hicate to the loader one of
the following: .. ,

1. A ~rogram load origin~'.

2. A 'pn;>gram stadi'ng addJ;€s-s~" ,
.... :·11... ~

.~" .. ~~ . .;. .~~ ;-.;: .
3. 'A~'e~1erl)a Ufefinition value.

4. A forward reference value.

5~', A field definition val ue.

Such expressions may include sums and differences of con­
stants, addresses, and external or forward reference va lues
that, when defined, wi /I themse Ives be constants or addresses.

After initiation of the expression mode, by the use of a con­
trol byte designating one of the five items described above,
the value of an expression is expressed as follows:

1. An address val ue is represented by an offset from the
control section base plus the value of the control sec­
tion base.

tlf the module has fewer than 256 previously assigned nome
numbers, this byte is absent.

2. The value of a const~lit is added to 'the accumulated
sum by generating an Add Constant (see below) control
byte followed by the value, right-iusfified in four
bytes. '

The offset from the control section base is given as a
constant representing the number of units of displace­
ment from the control section base, at the resolution
of the address of the item. Tllat is, a word address
would have its. constant portion expressed as a count
of the number of words offset from the base, while the
constant portion of a byte address would be expressed
as the number of bytes offset from the base.

The control section base value is accumulated by means
of an Add Value of Declaration (see below}or Subtract
Value of Declaration load item specifying the desired
resolution and the declaration number of the control
section base. The loader adjusts the base value to the
sp~cified.address resolution before adding it to the cur­
rent pOf'ttal,surp'for the expression.

, "" ..

In the case of an absolute address, an Add Absolute
Section '·(See below) or Subtract Absolute Section con­
trQI by.t~ 'must be included in the expression to identify
tO~, value as an address and ;!osp~cifyits' resolution.

'", .

3. An external definition ~f fo~¢;a reference value is
included in an expression by means of a load item add­
ing or subtracting the appr&priate declaration or for­
ward reference value. 'If tp~ value is an addrC';'ss,
the resolution specified,tn fh~ controJ bY,te. is u.sed to

~ , ., -.. .r.. otjI .. , 1- . ~'

align the value before a,~ding it to t~e:.:urr9n~p~rtial
sum for the expression. If the value hA,a con~nl,. no
alignment is necessary. . ~ , , .~, .

Expressions are not evaluated by the loader until cill re- :
quired values are available. In evaluating an expression,
the loader maintains a count of the number of values added
or subtracted at each of the four possible resolutions. A
separate counter is used for each resolution, and each
counter is incremented or decremented by 1 whenever a
value of the corresponding resolution is added to or sub­
tracted from the loader's expression accumulator. The final
accumulated sum is a constant, rather than an address
value, if the final count in all four counters is equal to O.
If the final count in one (and only one)of the four counters
is equal to +1 or -1, the accumulated sum is a "simple ad­
ress" having the resolution of the nonzero counter. If
more than one of the four counters hava a nonzero final
count, the accumulated sum is termed a "mixed-resolution
expression" and is treated as a constant rather than an
address.

The resolution of a simple address may be altered by
means of a Change Expression Resolution (see below)
control byte. However, if the current partial sum is
either a constant or a mixed-resolution value when the

Chonge Express!o'n ,Resolution control byte occurs, then
the expression .resolution is unoffedetf;

. Note that the 'expression for a program load onglO or
starting address r(lust reso'ive to a simple address, and the
single nonzero res.blu'tion counter must have a final count
of +1 when such expressions are evaluated.

In converting a byte address to a word address, the two least
significant bits of the address are truncated. Thus, if the
resulting"word address is later changed back to byte resolu­
tion, the referenced byte location will then be the first byte
(byte 0) of the word.

After an expression has been evaluated, its final value is
associated with the appropriate load item.

In the following diagrams of load item formats, RR refers to
the address resolution code. The meaning of this code is
given in the table be low.

RR Address Resolution

00 Byte
~

;

01 Halfword

10' Word

11·' Doobleword

Th~<l~o~}}~~YJjs¢ussed in this appendix, "Expression
Eval~,afj.O~"'., .-may appear only in expressions.

Add Constant

Byte 0

Control byte
o o o 0 o o

o 2 3 4 5 6

Byte 1

First byte of constant

o

Byte 2

Second byte of constant

o

7

7

7

Appendix F 203

. Byte 3

T,hird byt.f!of constant

o 7.

Byte 4

Fourth byte of constant -

o 7

This item causes the specified four-byte constant to be added
to. the loader's expression accumulator. Negative constants
are represented in two's complement form.

Add Absolute Section

Byte 0

Control byte
o 1 0 R

o 2 3 4 5 6 7

This item identifies the associated value (expression) as a
positive absolute address. The address resolution code, RR,
designates the desired resolution.

Subtract Absolute Section

Byte 0

10
Control b.~te

RI 0 1 1 0 R

0 2 3 4 5 6 ·7

"" This item identifies the ass6~iated value (expression) as a
negative absolute address. The address resolution code,
RR, designates the desired resol ution.

Add Value of Declaration

Byte 0

10
Control blte

RI 0 0 0 0 R

0 2 3 4 5 6 7

Byte 1

First byte of nome number

0 7

Byte 2

Second byte of name number J

0 7

tIf the module has fewer than 256 previously assigned name
numbers, th is byte is absent.

204 Appendi x F

I

'This·, i~~ .causes the value of the specified declaration to be
adde-d.'tQ t}le loader's expression accumulator. The address
res,9IU,non 'code, RR, designates the desired resolution, and
thenarpe number refers to a previously declared definition
narrie·~that is to be associated with the first location of the
allocated section.

One such item must appear in each expression for a reloca­
table address occurring within a control section, adding the
value of the specified control section declaration (i. e.,
adding the byte address of the first location of the control
section).

Add Value of Forward Reference

Byte 0

10
Control blte

RI 0 0 0 1 R·

0 2 3 ,4 5 6 7

Byte 1

First byte of forward reference number

o 7

. Byte 2

Second byte of forward reference number

o 9!:'. 7
This item causes the value of the specified forward reference
to be added to the looder's expression accumulator. The
address resolution code, RR, d~signates the desired resolu­
tion, and the designat~d forward ~eference must not have
been defjnedpr~viously.

Subtract Value of Declaration

Byte 0

Control blte
o o 1 o R

o 2 3 4 5 6 7

Byte 1

First blte of name number

o
Byte 2

7

Second blte of name numbert

This item causes the value of the specified declaration to
be subtracted from the loader's expression accumulator.
The address resolution code, RR, designates the desired
resolution, and the name number refers to a previously de­
clared definition name that is to be associated with the
first location 'of the allocated section.

Subtract Value of Forward Reference

Byte 0

10 0_
Control byte

R: .~ 0 1 1 '

0 2 3 4 5 6 7

Byte 1

I Fi rst byte of forward reference number

0 7

Byte 2

'Second byte of forward reference number

o 7

This item causes the value of the specified forward reference
to be subtracted from the loader1s expression accumulator.
The address resolution code, RR, designates the desired reso­
lution, and the designated forward reference must not have
been defined previously.

Change Expression Resolution

Byte 0

10 0

0 r~ 2

Control byte
\ 1 0

13
\

4

o R

5 6 7

This item causes the address resolution in the expression to
be changed to that designated by RR.

Expression End

Byte 0

10
Controlb~te

01 0 0 0 '0 0 " 1

0 2 3 4 5 "6 7

This item identifies the end of an expression (the value of '
which is contained in the loader's expression acculTlulator).

FORMATION OF INTERNAL SYMBOL TABLES
The three object code control bytes described below are re­
quired to supply the inFormation necessary in the formation
of Internal Symbol Tables.

In the following diagrams of load item formats, Type refers
to the symbol types suppl ied by the object language and
maintained in the symbol table. IR refers to the internal
resolution code. Type and resolution are meaningful only
when the value of a symbol is an address. In this case, it
is highly likely that the processor knows the type of value
that is in the associated memory location, and the type field
identifies it. The resolution field indicates the resolution
of the location cotmter at the time the symbol was defined.
The following tables summarize the combinations of value
and meaning.

90 31 13B-l(1l/76)

Symbol Types

~~--~~~--~--------------~--~----.-----
Type

00000
00001
00010
00011
00100.
00101' ,
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010 t
through f
11000
11001

11010 }
through
11111

IR

000
001 ; .

010
011 ' , . "

100
, ,..

Meaning of 5-8it<::ode

Instruction
Integer

'Short, floati ng-pp i nt
long floating-point'
Complex (short floating-point)
Double complex {long floating-point)
Hexadecimal (and packed decimal)
EBCt:HC
First instruction in ROM
Integer array
Short floating-point array
Long floating-complex array
Complex array
Double comp lex array
Hexadecimal ,array
EBCDIC array
Undefi ned symbo I
Logical

(Currently unused)

log icaJ array

(Currently ~nused)

Internal Resolution

Address ,Resolu~ioh

Byte
' Halfword
. Word, .

Doub1eword
Const~nt

... ."

Type,Jnformation for External Symbol

Byte 0

10
Control byte

0 0 1 0 0 0

0 2 3 4 5 6

Byte 1

Type field IR field

o 4 5

Byte 2

Name number

o

Byte 3 (if required)

Name number (continued)

o

Appendix ~

7

7

7

7

205

This item provides tr'pe information for external symbqls.
The Type and lR fields are defined above. The name

, r1umber, fi el,cJ consists of ana or tVloGytes, (dependi ng on the
curreritqeclQr~tion co~nt) which~.ipecifies the,declaration
number of th-d e'xterndl :de'finiti'on'.

Type and EBCDIC for Interna! Symbol.

Byte 0

10 0

Control byte

0 0 0

0 2 3 4 5 6 7

Byte 1

I Type field IR field

0 4 5 7

Byte 2

I
Length of nome (EBCD IC characters)

0 7
Byte 3

I
First byte of nome in EBCDIC

0 7
Byte n

I last byte of nome in EBCDIC

o 7
Byte n + 1, ... ,,:

Expression defining v'olue of internal symbol

o 7

This itemsuppliestypeand EBCDIC.foran internal symbol. The
load items for Type and IR are as above. Length of nome speci­
fi es the I ength of the E BCD IC nome in chara cters. lhe nome, in
EBCD IC, is speci fied in the required number of bytes, followed
by the expression defining the internal symbol.

!BCDIC for on Undefined Symbol

Byte 0

1 I 10
Control byte

0 0 1 0 0

0 2 3 4 5 6 7
Byte 1

I Length of nome (EBCD IC characters)

0 7
Byte 2

I First b:lte of nome in EBCDIC

0 7
Byte n

I
Lost byte of nome in EBCDIC

0 7

206 Appendix F

Byte n 4 1, n + 2

T~o bytes of symbol associated forv~ard reference numb_er

o 7
T-his item is'used to associate a symbol with a forward reference.
The lengtli ot nome and name in EBCD Ie are the same as in the
above item.~ The lost two bytes speci fy the forward reference
number with which the above symbol is to be associated.

LOADING
Load Absol ute

Byte 0

10
Control byte

NI 0 0 N N N

0 2 3 4 5 6 7

Byte 1

I
First byte to be loaded I

0 7

Byte NNNN .'~

Last byte to be l09ded

I
o '.. t, 7

This item. causes the next NNNN bytes to be loaded abso­
~~tely'(NNNN is express~d in'(ildfurai bina.ry f~;~, ~xcept
that 0000 is interpreted as 16 rather than 0). JFie'load loca-
tion counter is ad.vanced appropriate.ty. "

load Relocatable (Long Form)

Byte 0

10

I

RI

Control blte
0 1 Q C R

0 2 3 4 5 6 7

Byte 1

First blte of name number

o 7

Byte 2

Second blte of name numbert

o 7

This item causes a four-byte word (immediate Iy following this
load item) to be loaded, and relocates the address field
according to the address resolution code, RR. Control bit
C designates whether relocation is to be relative to a for­
ward reference (C = 1) or relative to a declaration (C = 0).
Control bit Q designates whether a l-byte (Q = 1) or a
2-byte (Q = 0) name number follows the control byte of
this load item.

tIf the module has fewer than 256 previously assigned nome
numbers, this byte is absent.

.'

90 31 138 -1{11/76)

If relocation is to be relative to a fOlWClrd reference, the
forward reference must not have been, defined previously.
When this lood item is encountered by the loader, the load
location counter can be aligned with a word boundary by
loading the appropriate number of bytes containing all
zeros (e.g., by means of a load absolute item).

load Relocatable (Short Form)

Byte 0

Control byte
C D o 0 o o

o 2 3 4 5 6 7

This item causes a four-byte word (immediately following
th.is load item} to be loaded, and relocates the address field
{word resolution}. Control bitC designates whether reloca­
tion is to be relative to a forward reference (C = 1) or rela­
tive to"~ declaration (C=O). The binary number DDDDDD

"'l~¢fhe forward reference number or declaration number by
whi'Ch telocation is to be accomplished.

If relocation is .to be re lafive to a forward reference, the
forward reference mus~ not"Jfove been defined previously.

" When this ,~. item is:enco~ntered by the loader, thel~ci.d
location counrer must be on a word boundary (see "Load'
Relocatable (lon~ Form).", above).

Repeat Load

Byte 0

o
Byte 1

o
Byte 2

o

o
Control byte

o o 1

2 3 4 5 6 7

First byte of repeat count

7

Second byte of repeat count

7

This item causes the loader to repeat (i. e., perform) the
subsequent load item a specified number of times. The
repeat count must" be greater than 0, and the load item to
be repeated must follow the repeat load item immediately.

Define Field

Byte 0

Control byte
o o o 0

o 2 3 4 5 6 7

Byte 1

" __ ~Id lo~oti~n con~ta~t, i~~ bit's' (K) -j
7

I ~ ____________ F_i_e_ld __ le_n~g~th~'~'~in __ b~it_S~(~L)~ ________ ~

o 7

This item defines a value (expression) to be added to 0 field
in previously loaded information. The field is of length L
(1 :::: L :::: 255) and terminates in bit position T, where:

T = current load bit position -256 +K.

The field location constant, K, may have any value from .
1 to 255. The expression to be "added to the specified
field is the one immediately following byte 2 of this load
item.

MISCELLANEOUS LOAD ITEMS

Padding

Byte 0

10
Control b.,lte.

01 0 0 0 0 0 D
(

0 2" 3 4 5 6 7

Paddi ng bytes are ignored by the loader. The object lan-
guage alJowspadding as a convenience for processors.

Module End

Byte 0

10
'Control b~te

0 0 0 1 1 1

0 2 3 4 5 6

Byte 1

10
Severitl level

0 0 0 E E E

0 2 3 4 5 6

This item identifies the end of the object module. The
value EEEE is the error severity level assigned to the
module by the processor.

OBJECT MODULE EXAMPLE

01
7

E I
7

The following example shows the correspondence between
the statements of a Meta-Symbol source program and the
string of object bytes output for that program by the assem­
bier. The program, listed below, has no significance other
than illu.;trating typical object code sequences.

Appendix F 207

Example

DEF AA, BB,CC Cc IS UNDEFINED BUT CAUSES N~
ERROR "

2 REF "RZ, RTN EXTERNAL REFERENCES DECLARED

3 00000 ALPHA CSECT DEFINE CONTROL SECTION ALPHA

4 00OC8 ORG 200 DEFINE ORGIN

5 00OC8 22000000 N AA LI, CNT 0 DEFINES EXTERNAL AA; CNT ISA
FWD REF

6 00OC9 32000000 N lW,R RZ { R IS A FORWARD REFERENCE;

7 * RZ IS AN EXTERNAL REFERENCE, AS

8 * DECLARED IN LINE 2

9 OOOCA 50000000 N RPT AH,R KON { DEFINES RPT; RAND KON ARE

10 * FORWARD REFERENCES

11 OOOCB 69200000 F BCS,2 BB { SS IS AN EXTERNAL DEFINITION,:.

12 * USED AS A FORWARD ~EFERENt,It,,"

13 OOOCC 20000001 N AI,CNT CNT IS A rORWA~b REF'ElfENCE

14 OOOCD 680000CA B RPT RPT IS A BACkwARD REFERENCE'

15 OOOCE 68000000 X B RTN RTN IS AN EXTERNAL REFERENCE
"

1.6 " .. ,' OOOCF 0001 A KON DATA, 2 DEFIN ES K,ON

17 eOOOOO03 R EQU 3 DEFINES R

18 00000004 CNT EQU 4 DEFINES CNT

19 OOODO . 224FFFFF A' SB LI, CNT -1 {DEFINES EXTERNAL SS tHAT HAS

20;ALSO BEEN USED AS A FORWARD

21 * REFERENCE

22 OOOC8 ;.'. END AA END'OF PROGRAM

CONTROL BYTES (In Binary)

Begin Record Record number: 0 .

00111100 }
00000000

Record type: not lost, Mode binary, Format: object language.
Sequence number 0 } Record control

information not
pOrt of load item 01100011

01101100
Checksum: 99
Record size: 108

0302C lC 1 (hexadecimal code comprising the load item)
00000011 Declare external definition name (2 bytes) Namc:AA

0302C2C2
00000011 Declare external definition nome (2 bytes) Name: BB

0302C3C3
00000011 Declare external definition name (2 bytes) Name:CC

0502D9E9
00000101 Declare primary reference name (2 bytes) Name RZ

050309E305
00000101 Declare primary reference name (3 bytes) Nome: RTN

208 Appendix'F

Declaration number: 1

Declaration number: 2
Source li ne 1

Declaration number: 3

Declaration number: 4

Oecl aration number: 5

} Source line 2

Begin Record Record number: 0

00001010

00000001
00100000

00000010

00000100 }
00000001
-00100000

00000010

01000100

00009111,..

001001 fa
00000010

10000100

00000111

00100110

00000010

11001100

00000111

00100110

00000010

OAO 10 100000320200002
Define external definition
Number 1
Add constant: 800 X'320'
Add value of declaration (byte resolution)
Number 0
Express i on end

040100000320200002
Origin
Add constant: 800 X' 320'
Add value of declaration (byte resolution)
Number 0
Expression end

4422000000
load absolute the following 4 bytes: X'220000OO'

07EB0426000002
Def\ne field ,
-Field lottJHon' constant: 235 bits
Fieid le~9th:.4 bits
Add the following expression to the above field:

. 'Add value of forward reference (word re~olution)
Number 0
Express i on end'

44;32000000
~d relocatable (short form). Relocate address field (word resolution)
Re!lative to declaration number 4
The following 4 bytes: XI 32000000'

07EB0426000602
Define field
Field location constant: 23$' bits.
Field length: 4 bits'
Add the following e~pression to the above field:
Add value of forward reference (word resolution)
Number 6
Expression end

CC50000000
load relocatable (short form). Relocate address field (word resolution)
Relative to forward reference number 12
The following 4 bytes: XiSooOOOOO'

07EB0426000602
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 6
Express i on end

Source Li ne st

} Source Li ne 4

Source Li ne 5

Source li ne 6

Source li ne 9

tNo object code is generated for source lines 3 (define control section) or 4 (defi~e origin) at the time they are encountered.
The control section is declared at the end of the program after Symbol has determined the number of bytes the program requires.
The origin definition is generated prior to the first instruction.

Appendix F 209

Begin Re.c()(~_Rec()rd number: 0

11010010

01000100

00000111

/

00100110

00000010

10000000

10000101

00001000

D2692f)OOOO
Load n~locorQblE' {short form}. Relocate address field {word resolution}
Relative to forward reference number.18
The following 4 bytes: X'69200000't

4420000001
Load absolute the following 4 bytes: X'20000001 '

07EB0426000002
Define field
Field location constant: 235 bits
Field length: 4 bits
Add the following expression to the above field:
Add value of forward reference (word resolution)
Number 0
Expression end

80680000CA
load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 0
The foHowing 4 bytes: X'680000CA'

8568000000
load relocatable (short form). Relocate address field (word resolution)
Relative to declaration number 5
Thefollow1iing 4 bytes: X'68000000'

08
Define fbr';"ord reference (continued in, record 1)

Begin Record Record number: 1

00011100
00000001
1110 1100
01010001

00000001
00100000

00000010

01000010

00001000

00000001
00000010

00001000

00000001
00000010

Record type: last, Mode: binary, F"oririat: object lar:'\guage.
Sequence number 1
Checksum: 236
Record size: 81

oooeo 10000033C200002 (continued from record 0)
Number 12
Add constant: 828 X' 33C'
Add value of declaration (byte resolution)
Number 0 .
Express i on end

42001
load absolute the following 2 bytes: X'OOO l'

080006010000000302
Define forward reference
Number 6
Add constant: 3 X'3'
Expression end

080000010000000402
Define forward reference
Number 0
Add constant: 4 X'4'
Expression end

210 Appendix F

}

}
}

}

}

}

Source li ne 11

Source li ne 13

. SourceJine. 14

Source',line 1,5

Source li ne 16

Record Control
Information

Source line 16

Source li ne 17

Source line 18

Begin Record Record number: 1

00001111

01000001

00001000

00000001

00000010

00001010

00000001
00l.QOOOO

00000010

01000100

00001101 ..
00000001·
00100000

00000010

00001011

00001110

OF00024100
Repeat load
Repeat count: 2
load absolute the following 1 bytes: X'OO'

0800120100000340200002
Define forward reference
Number 18
Add' constant: 832 X'340'
Add value of declaration {byte resolution}
Number 0
Expression end

OA020100000340200002
Define external definition
Number 2
Add constant: 832 X'340'
Add value of declaration {byte resolution}
Number 0
Expression end

#224FFFFF
load absolute the following 4 bytes: X'224FFFFF'

000100000320200002
'f)efi ne start
'Add constant: 800 ·Xt 32<Y
Add value of dec1~r~.ion (byte resolution)
Number 0
Expression end •

OB000344
Declare standard c()n't~6'1 section declaration numb~r:.O
Access code: Full Ci-e~ess. .Si~e 83'6. X '344'

OEOO
Module end

Severity level: X'O'

A table summarizing control byte codes for object languag,EiJ9Q9 items is 'given bel~w.

Object Code Control Byte Type of Load Item

0 0 0 0 0 0 0 0 Padding

0 0 0 0 0 0 0 1 Add constant

0 0 0 0 0 0 1 0 Expression end

0 0 0 0 0 0 1 1 Declare external definition name

0 0 0 0 0 1 0 0 Origin

0 0 0 0 0 1 0 1 Declare primary reference name

0 0 0 0 0 1 1 0 Declare secondary reference name

0 0 0 0 0 1 1 1 Define field

0 0 0 0 1 0 0 0 Defi ne forward reference

0 0 0 0 1 0 0 1 Declare dummy section

0 0 0 0 1 0 1 0 Define external definition

., Advance to Word
Boundary

Source line 19

Source li ne 22

Appendix F 211

Obiect Code Con tro I Byte Type 'of Loa~:.·~t~~ .. , ~~v

.() 0 f). 0 1 0 1 . 1 . .' Declare s'tartdord .. c'~tr'~1 se~tio.ll

0 0 0 0 1 1 0 0 Declare nonst~~~o~d' control s~ction
0 0 0 0 1 1 0 1 .. , D~fine start

0 0 0 0 1 1 1 0 Module end

0 0 0 0 1 1 1 1 Repeat load

0 0 0 1 0 0 0 .0 Define forward reference and hold

0 0 0 1 0 0 0 1 Provide type information for external symbol

0 0 0 1 0 0 1 0 Provide type and EBCDIC for internal symbol

0 0 0 1 0 0 1 1 EBCDIC and forward reference number for undefined symbol

0 0 0 1 1 0 0 1 Declare ROOT dummy section

0 0 0 1 1 1 1 0 Declare page boundary control section

0 0 1 0 0 0 R R Add value of declaration

0 0 1 0 0 1 R R Add value of forward reference

0 0 1 0 1 0 R R , Subtract value of declaration

0 0 1 0 1 1 R R Subtract value of forward reference

0 0 1 1 0 0 R R Change expression resolution

0 0 1 1 0 1 R R Add absolute section

0 0 1 1 1 0 R R Subtract absolute section

0 J .t 0 0 N N N N load abso I ute

0 1 0" -1 Q C .. R 'R load relocatable (long form)

1 C D 0 'D D D 6 load relocatable (short form)
..

212 Appendix F 90 31 13B-1(l1/76}

APP:ENDIX G." XEROX'STAND"A~D COfl1PRESSED LANGUA[~E

The Xerox standard compressed language is used to represent
~urce EBCDIC information in 0. hig_hlr c?mpressed form.

Meta-Symbol (along with several of the utility p~ograms)
accepts this form as input or output I will accept updates to
the compressed input and wi II regenerate source when re­
quested. No information is destroyed in the compression or
decompression.

I

I

Records may not exceed 108 bytes in length. Compressed
records are punched in the binary mode when represented
on card media. Therefore, on cords, columns 73 through
80 are not used and are available for comment or identifi­
cation il)formation.

The fi rst four bytes of each record are for check i ng purposes.
Th~ > are as follows:

Byte 1 Identification (OOL11000) L = 1 for each record
except the last record, in which case L =0.

Item Function

,0 Ignore
.' 1 Not currentJy assigned

i' ~nd of line
3 End of file
4 . Use 8-bit character that followst

5 Use n + 1 ,blanks (next 6-bit item is n)
6 Use n+ 65 blanks (rlext 6-bit item is n)
7 Blank
8 0
9 1

10 2
11 3
12 4
13 5
14 6
15 7
16 8
17 9
18 A
19 B
20 C
21 D
22 E
23 F
24 G
25 H
26 I
27 J
28 K
29 L
30 M
31 N

I
i

Byte 2 Sequence number (0 to, 255 and recycles).

Byte 3 Checksum which is the least significant 8 bits
of the sum of all bytes in the record except
the checksum byte itself. Carries out of the
most significant bit are ignored. If the
checksum byte is all l's, do not checksum
the record.

Byte 4 Number of bytes comprising record including
the checking bytes (!S 108)

The rest of the record consists of a st'ring of 6-bit and a-bit
items. Any partial item at the end of a record is ignored.

, The following six-bit items (decimal number assigned) com­
I prise the string control: .

Item Function

32 0
33 P
34 ,Q
35 R
36 S
37 J
38 U

.,39' V
AO w
41 X
42 y
43 Z
44 .
45 <
46 (.

47 +
48 I
49 &
50 $
51 *
52)
53 ;
54 ...,
55 -
56 /
57 I

58 %
59 '-'

60 >
61 :
62 I

63 =

tEight-bit characters are in uncompressed EBCDIC format (e. g., !@'?).

A'PPENI)U< H. XEROX'STANDA:RD SYMBOLS, 'COOESAf~D CORRESPONDENCES
..... . 'i.. t

· '. r . .' ' J' l~" . •

XEROX STANDARD SYMBOLS AND COOES " ,

The symbols I isted here inc'Jude 'two typ~s: graph ic sYmbols
and control characters. Graphic symbols -dr~ displayable
and printable; control characters are not. Hybrids are SP
(the symbol for a blank space), and DEL (the delete code)
which is not considered a control command.

Two types of code are also shown: (l)the a-bit Xerox Stan­
dard Computer Code, i. e., the Xerox Extended Binary­
Coded-Interchange Code (EBCDIC); and (2) the 7-bit Amer­
ican National Standard Code for information Interchange
(ANSCII), i. e., the Xerox Standard Communication Code.

XEROX STANDARD CHARACTER SETS
1. EBCDIC

57-character set: uppercase letters, numerals, space,
(Jnd & - / • < > () + I $ * ': ; ,
% ',,@ I =

\ .
63-character set: sam~ as above plus ¢. ?
fI ...,

, 89-character set: same os 63-character set plu.s lower- "
case letters

21-' Appendix Ii ,',

2. ANSCIl

64-character set: uppercase letters, numerals, space,
and I tI $ % & I () * +, • / \
i : = < > ? @ _ []A 'I...,
95-character set: same as above plus lowercase letters
and 1 l : ,.., \

CONTROL CODES
In addition to the standard character sets listed above, the
Xerox symbol repertoire includes 37 control codes and the
hybrid code DEL (hybrid code SP is considered part ~f aU
character sets). These are listed in the table titled CP~tV
Symbol-Code Correspondences. .

SPECIAL CODE PROPERTIES
The following two properties of all X~rox standa;dc6d~s
w~1I be retained for future standard coCfe extensiort$: .

~
," ~ .;

1\ AU control codes, and only the cont.fol codes, have
.: th~ir two high-order bits equal to "OO~'. DEL is not

consid~red- a control code.

2. No two- graphic EBCDIC codes h6v~<;their se~en low-
order b~'$ equal. '

TableH-1. CP-V 8-BH C~puter Codes (EBCDIC)

Sig ificant Digi .' ,.:

Hexadecimal 0 1 2 '3 4 5 6 7 ' 8 ,9 A B C D ' E F

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 10lt 1100 1101 1110 1111

0 0000 NUL DLE lo~ly
ESC SP & SP 0 F - -

p<-ON CAN; "i"';« /
',: \ t 1 0001 SOH FS a i A J 1

2 0010 ' STX DC2 GS
ESC

, • .1.. r ' .. , '
b k t 1

X ', , ... , s B K S 2

X-OFF
ESC 0,

' .'. l 1 3 0011 ETX RS P .. ,'::, !; ...• ' C I t C l T 3

4 0100 DC4 l .', 1 i ," [
1

EOT US' U ' ',. "".':'"
d m u D M U 4

LF ESC " 1
5 0101 HT NL EM (f T ' e n v] E N V 5

:~ 6 0110 SyrJ /
ESC ,'.'" ·.··0 W

~'.,

0 ACK) ,., f 0 w F 0 W 6

t~
ESC

,"• ,'

7 0111 Bel ETB 1\ •. >.,., .•••.• ,.,. !) G P X 7 T .' ,.".' 9 P x
. EOM ESC .:~'" . "

, t~ 8 1000 BS CAN = S i

I,.
.' '" h q y H Q Y 8

~~y E: :~;~J:, ••.••.. ,•••..... ".,' "

! 9 1001' '" ENQ EM
,.'

i.,'." i I R Z 9 onl E .",:, ,' .. r z

E~C , 2 _1 .,'!;" •••• ' .•• ; ~'< A 10 to .. NAK SUB EOT ! :
'" . :'} 'i(} . i, .. '~}

.~ ... ' ESC"
B , VT ESC 8S LF i $, , ;ii.: ,if',

.,;, .. ,

1~ " ~, . [s. it.';
,.,.

C. FF FS) X-QN '<' * % @ :~
},.,.'

I
] ~

., ,.,'., .'}

D 110 CR GS HT)f-OFF () I 7,·.····

1~:~1i " 'i'" ~;to ' IF ESC
E SO RS only. R + ;, > = r:>:i' '.,', ,

F U11 SI US SUB' I~~ I 2 -,2 ? " & I -,'. ~; ,~~) DEL
.-. II. A ,.. A

¥ • " 4,7 5

The characters A \ t} [] ar~ ANSell characters that do not appear in any'of the Xerox EBCDIC-based
character sets, though they are shown in the EBCDIC table. '

2 The characters II -, appear in the Xerox 63-·and 89-character EBCDIC sets but not in either of the Xerox
ANSCII-based sets. However, Xerox software translates the characters t I -, into ANSCII characters as
follows: '

EBCDIC

I
I
-,

ANSCII

, (6-Q)
: (7-12).

-- (7-14)

3 The EBCDIC control codes in columns 0 and 1 and their binary representation are exactly the same as those
in the ANSCII table, except for two interchanges: IF/Nl with NAK, and HT with ENQ.

4 Characters enclosed in heavy lines are included only in the Xerox standard 63- and 89-character EBCDIC sets.

5 Tbese characters are included only in the Xerox standard 89-character EBCDIC set.

6 The EBCDIC codes in column 3 are used by cac to perfonn special functions. The EBCDIC codes in
column 2 and positions AF and BC through BF are used by cac for output only.

1 APl characters are assigned EBCDIC values that fall within the shaded area of the CP-V code set. These
assignments are for APL internal use and are only reflected in 2741-APL translation tables.

8 Placing a SY N code as the last position of a nontransparent message wi II prevent the transmission of the SYN
and the normal message appendage of the CR/LF pair. This allows a user to, continue writing more than one
message on the same I ine without affecting the carrier position. The EBCDIC SYN code is translated to an
idle (IL) on output to 2741 terminals.

Appendix H 215

Notes:

Table H"';2. , CP;..V 7-BitCo~rl~unic;atlon CodE:S (ANSell)

Most Significdnt Digits
Decimal '(j 1 2 3 4' 5 6 7 (row) (cof:s.)-

I- Bindry' xCOO xOOl xOlO x011 xlOO xl0l xll0 xlII ,

° 0000 NUL OLE SP ° @ P " P

1 0001 SOH
5

DCl I 1 A Q a q

2 0010 STX DC2 " 2 B R b r

3 0011 ETX DC3
,

3 C S c s

4 0100 EOT DC4 $ 4 0 T d t

5 0101 ENQ NAK % 5 E U e u ...
+-

m 6 0110 ACK SYN & 6 F V f v 0
C 7 . 0111 BEL ETB I 7 G W 0 g w
u

:;:
·c 8 1000 BS CAN (8 H X h x m
Vi
+-

9 1001 HT EM) 9 I Y i 0 Y
" ..J IF 10 1010 SUB * J Z j Nl : z

11 1011 VT ESC + ; K
4 [5

k t
12 1100 FF FS < l \ I

I , I

I,
13 nOl CR GS - = M

4) 5
m J 4

4_ 5 . , .. 4
14 1101 SO RS > N .,. n '-

/
4

15 1111 51 US ? 0 - 0 DEL
A

i
I

2

1 Most significant bit, added for 8-bit format; is either 0 or aheven-parity bit for the remaining 7 bits.

2 Columns 0-1 are control codes.

3 Columns 2-5 correspond to the Xerox 64-character ANSCII set.·
Columns 2-7 correspond to the Xerox 95-character ANSCII set.

4 On many current teletypes, the symbol

"" is t (5-141
_ is -(5-15)
,.., is ESC or AlTMODE control (7-14)
I is ESC or AlTMODE control (7-13)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences
noted above, therefore, such teletypes provide all the characters in the Xerox 64-character ANSCII set.
(The Xerox 7015 Remote Keyboard Printer provides the 64-character ANSCIJ set also, but printsAasA.
It also interprets the [] characters as I -. .)

5 On the Xerox 7670 Remote Batch Terminal, the symbol

I is I (2-1)] is f (5-13)
[is t (5-11) ~ is"" (5-14)

and none of the symbols appearing in columns 6-7 are provided. Except for the four symbol differences noted
above, therefore, this terminal provides all the characters in the Xerox 64-character ANsell set.

216 Appendix 'H

Table H.;..3. CP-V'S'y!"bol~Cod~ Correspondenc~s"~ . '
, ' .. :

EBCDICt
.:!

Hex. Dec. Symbol Card Code ANsCtltt, M.eaning :. tert.arks

00 0 ' ' NUL 12-0-9-8-1 0-0 nulr
>,

'OOthrou9h 1 F are control codes.
01 1 SOH 12-9-1 0-1 start of'htader " 00.2741. terminals; SOH is PRE.
02 2 STX 12-9-2 0-2 start of text .', . On. 2741 terminals, STX Is BY.
03 3 £TX 12-9-3 0-3 end of text On 2741 terminals, ETX is RES.
04 .. EOT 12-9-4 0-4 end of transmission
05 5 HT 12-9-5 0-9 horizontal tab 00, 06, 07, 09-08, and OE-OF
06 6 ACt< 12-9-6 0-6 acknowledge (positive) are idles for 2741 terminals.
07 7 BEL 12-9-7 0-7 bell
08 8 8S or EOM 12-9-8 0-8 backspace or end of message EOM is used only on Xerox Kp.yboard/
09 9 ENQ 12-9-8-1 0-5 enquiry Printers Models 7012, 7020, 8091,

, OA 10 NAK 12-9-8-2 1-5 negative acknowledge , and 8092.
OB 11 VT 12-9-8-3 0-11 vertical tab
OC 12 FF 12-9-8-4 0-12 form feed
00 13 CR 12-9-8-5 0-13 carriage return CR outputs CR and LF.
OE .}4 SO 12-9-8-6 0-14 shift out
OF '15 SI 12-9-8-7 0-15 shift in

,10 16 OLE 12-11-9-8-1 1-0 data link escape
11 17 DCl 11-9-1 1-1 device control 1 On Teletype terminals, OCI is X-ON.
12' 18 OC2 11-9-2 1-2 device control 2 On 2741 terminals, OC2 is PN.
13 19 ., DC3 11-9-3 1-3 devi ce control 3 DC3 is RS on 2741s and X-OFF on
1:(20" DC4 11-9-4 1-4 device control 4 Teletypes.
15 "21 IF or Nl 11-9-5 0-10 line feed or new line On 2741 terminals, OC4 is PF.
16 , ~2 SYN 11-9-6 1-6 sync LF outputs CR and LF.
.17 23 ET8 11-9-7 1-7 end of transmission block On 2741 terminals, ETB is EOB.
1,8 ¥ 24 CAN 11-9-8 1-8 cancel
19 " is EM 11-9-8-1 1-9 end of medi um
lA :26 SUB 11-9-8-2 1-10 substitute Replaces characters with parity error.
lB ~~;..~:.." ESC 11-9-8-3 1-11 escape
lC 2ft .. \> FS 11-9-8-4' 1-12 fj Ie separator
10 29 GS 11-9-8-5 1-13 group separator 10, 11, 16(. 18, 19, and I,B-l~ are,-'
IE 30, RS 11-9-8-6 1-14 record separator idles for '27Jll terminals.' ",' i

1F 31. "
,~t • .r

US 11-9-8-7 1-15 unit separator ~. ,

v. . ,- .
'" .. ,

20 32 .:\ .LF only 11-0-9-6:'1 "" ~ 1-5 line feed only 20 through 2F are used by COC for
21 33 FS 0-9-1 ;. 1-12 output oob'. These focles are
22 34 GS 0-9-2 1-13 duplicates of the lobel entries
23 35 RS 0-9~3 1-14 that caused activation. The
24 36 US 0-9-4 1-15 2O-2F entries output a single cod~
25 37 EM O-?,-5 -eo 1-9 . only and are not affected by any
26 38 / 0-9-6 2-15 speCial COC functional processing.
27 39 1 0-9-7 5-'4
28 40 = 0-9-8 3-13
29 41 CR only 0-9-8-1 0-13 ~rriage return only'-
2A 42 EOT 0-9-8-2 ().-.4

28 43 8S 0-9-8-3 0-8
;

2C 44) 0-9-8-4 2-9
20 45 HT 0-9-8-5 0-9 tab code only
2E 46 LF only 0-9-8-6 1-5 line feed only
2F 47 SUB 0-9-8-7 1-10

30 48 ESC F 12-11-0-9-8:-1 end of file 30 through 3F couse C~C to perform
31 49 CANCEL 9-1 delete all input and output special functions.
32 50 ESC X 9-2 delete input line
33 51 ESC P 9-3 toggle half-duplex paper tape made
34 52 ESC U 9-4 toggle restri ct upper case
35 53 ESC (9-5 upper case shift
36 54 ESC) 9-6 lower case shift
37 55 ESC T 9-7 toggle tab simulation mode
38 56 ESC S 9-8 toggle space insertion mode
39 57 ESC E 9-8-1 toggle echo mode
3A 58 ESC C 9-8-2 toggle tab relative mode
38 59 ESC IF 9-8-3 line continuation 38 toggles the backspace edit mode
3C 60 X-ON 9-8-4 start paper tape for 2741 terminals.
3D 61 X-OFF 9-8-5 stop paper tope
3E 62 ESC R 9-8-6 retype
3F 63 ESC CR 9-8-7 line continuation

tHexadecimal and decimal notation.

ttOecimal notation {column-row}.

Appendix H 217

Table ,H .. ·3. ' CP:"'Y'Symbo'I-Code Correspondences {c'ant.}

-
EBCDlCt

Hex. Dec. Symbol Cord Code ANsel,I tt M~aning Remarks

40 64 Sp. olank 2··0 blank
r.

41 65 '12-0-9-1 41, 43, 46, and 47 are unassigned.
42 66 1. 12-0:-9-2' decode
43 67 12-0-9-3
44 68 L 12-0-9-4 minimum 42, 44, 45, 48, and 49 are APl
45 69 E 12-0-9-5 epsilon characters for 2741 APl use only.
46 70 12-0-9-6
47 71 12~-9-7

48 72 A 12-0-9-8 delta
49 73 i 12-8-1 index
4A 74 tor' 12-8-2 6-0 cent or accent grave Accent grave used for left single
4B 75 12-8-3 2-14 period quote. On Model 7670, , not
4C 76 < 12-8-4 3-12 less than available, and I = ANSCII 5-11.
40 77 (12-8-5 2-8 left parenthesis On 2741 APt, tis c (subset).
4E 78 + 12-8-6 2-11 plus
4F 79 lor: 12-8-7 7-12 vertical bar or broken bar On Model 7670, : not available,

and I = ANSCII 2-1.

'"
50 80 & 12 2-6 ampersand On 2741 APl, & is n (intersection). "

51 81 12-11-9-1 51, 52, 54, 57, 58, and 59 are
52 82 12-11-9-2 unassi gned.
53 83 0 12-11-9-3 quad 53, 55, and 56 are APl charact~rs
54 84 12-11-9-4 for 2741 APt ~se only.
55 85 T 12-11-9-5 encode .
56 86 0 12-11-9-6 circular
57 87 12-11-9-7
58 88 12-11-9-8

...

59, 89 11-8-1- , . ;.

5A 9p I 11-8-2 2-1 exclamation point On Model 1670, I is I . On 27.1),:Z

58 91 $ 11-8-3 2-4 dollars APt, J ,js~ (degree). On 2741 ,."
5C 92 * 11-8-4 2-10 asterisk APL, , $ is ,U (union).'. ~";
5D 93) 1l-8-~ 2-9 right parenthesis ,
5E 94 ; 11-:8-8 3-11 semicolon .
SF 95 -or, 11-8-7 7-14 tilde or logical not On Model 7670, ,., is not available,

and,= ANSCII 5-14.

60 96 11 2-13 mi nus, dash, hyphen
f '!.' - ~'i~? 61 97 / 0-1 2-15 slosh

62 98 r 11-0-9-2 maximum 62, 64, 66;'aoo 67 are APl characters
63 99 11-0-9-3 for, ~741,APl use only.
64 100 J 11-0-9-4 down arrow
65 101 11-0-9-5
66 102 CAl 1,1,-0-9-6 omega

'.-'\1
63, 65" 68, and 69 are unassigned. '

67 103 !:) 11-0 ... 9-7 superset
68 104 11-0:-9-8 -(;"

69 105 0-8-1
6A 106 " 12-11 5-14 ,~ircumflex On Model 7670" is., On Model
68 107 , 0-8-3 2-12 comma 7015 "is 1\ (caret). On 2741 APL,
6C 108 % 0-8-4 2-5 percent "is t • On 2741 APl, % is P.

60 109 - 0-8-5 5-15 underline Underline is sometimes called "break
6E 110 > 0-8-6 3-14 greater than character"; may be printed along
6F 111 ? 0-8-7 3-15 question mark bottom of character line.

70 112 1\ 12-11-0 APl 70-72, 74, 76, and 79 Qre APl
71 113 .. 12-11-0-9-1 APl quote mark characters for 2741 APl use only,
72 114 - 12-H-O-9-2 overscore
73 115 12-11-0-9-3
74 116 S 12-11-0-9-4 less than or equal 73, 75, 77, and 78 are unassigned.
75 117 12-11-0-9-5
76 118 ~ 12-11-0-9-6 greater than or equal
77 119 12-11-0-9-7
78 120 12-11-0-9-8
79 121 V 8-1 down delta
7A 122 8-2 3-10 colon
78 123

,
8-3 2-3 number

7C 124 @ 8-4 4-0 at
70 125 I 8-5 2-7 apostrophe (right single quote) . '

7E 126 = 8-6 3-13 equals
7F 127 II 8-7 2-2 quotation mark

tHexadecimal and decimal notation.

tt Decimal notation (column-row).

218 Appendix H

Table B-3. CP-V Symbol-'Code Corresp'ondences (copt.)
, ,

EBCDICt ~'1,f ..
Hex. Dec. Symbol Cord Code ANSCli tt Meaning Remarks

80 128'll· 12-0-8-1 ,80 is lJnos~igned, .
8t 129 a 12-0-1 6-1 8l-89;· 91-99, A2-A9 .compri$e the
82 130 b 12-0-2 6-2 .I~w~r,c.ose alphabet. Available
83 131 c 12-0-3 6-3 only in Xerox standard 89- on'd 95-
84 132 'd 12-0-4 6-4 character sets.
85 133 e 12-0-5 6-5
86 134 f 12-0-6 6-6
87 135 9 12-0-7 6-7
88 136 h 12-0-8 6-8
89 137 i 12-0-9 6-9
8A 138 12-0-8":2 8A through 90 are unassigned.
88 139 12-0-8-3
8C 140 12-0-8-4
80 141 12-0-8-5
8E 142 12-0-8-6
8F 143 12-0-8-7

90 i«. 12-11-8-1
'91 145 j 12-11-1 6-10
'92 146 k 12-11-2 6-11
93 147 I 12-11-3 6-12
94 148 m 12-11-4 6-13
95. 149 n l2-11-5 6-14
96' . ,150 0 12-11-6 6-15
97· 151 p 12-11-7 7-0
98 152 q 12-11-8 7-1

'; ,,99 153 ~r 12-11-9 7-2

~?'" ' 154 12-11-8-2 9A through Al are unassigned.-
"9S- , ~55 12~ll-8-3

·9C '156 ' l2-11-8-4 '.
9D~~ l57

I U-l't-8-5
\

9E '158 I 12-11-8-6
9F 159 I 12:-11-8-7

AO 160 11-0-8-1
A1 161 11'-0::'1
A2 162 s 11-0-2 7-3
A3 163 t :t~~ 11-0-3 7-4
A4 164 u -;"'t ·.:~1-Q-4 7-5
A5 165 v . ·"-0-5", 7-6
A6 166 w : .. jf~-6 7-7
A7 167 x ·11-0-7 7-8
A8 168 y 1,-0':8 7-9
A9 169 z 11-"0-9 : ; 1,..10
AA 170 11-0-8-2 . M through AE are unassigned.
A8 171 11-0-8'-3
AC 172 11-0-8-4 . ~,.

AD 173 11-0-8-5
AE 174 11-0-8-6
AF 175 I 11-0-8-7 logical and AF is used by COC for output of

an ANSCII 7-12 code only.

BO 176
\

12-11-0-8-1
Bl 177 12-11-0-1 5-12 backslash
B2 178 t 12-11-0-2 7-11 left brace On 2741 terminals, 1 is'output as (.
B3 179 12-11-0-3 7-13 right brace On 2741 terminals, J is output as).
B4 180 [12":11-0-4 5-11 left bracket On Model 7670, [is t. On Model
B5 181] 12-11-0-5 5-13 right bracket 7015, [is I.
B6 182 12-11-0-6 On Model 7670,] is l. On Model
B7 183 12-11-0-7 7015,] is-,. "
B8 184 12-11-0-8 BO and B6 through BB are unassigned.
89 185 12-11-0-9
SA 186 12-11-0-8-2
BB 187 12-11-0-8-3
BC 188 [12-11-0-8-4 left bracket BC, BD, and BF are used by COC for
SO 189] 12-11-0-8-5 right bracket output of ANSClI 5-11, 5-13, and
BE 190 lost data 12-11-0-8-5 lost data 7-14, respectively.
BF 191 -, 12-11-0-8-7 logical not On 2741 Selectric and EBCD Standard

Keyboards, [is output as (and]
is output as).

tH~xadecimal ond decimal notation.

ttDecimal notation (column-row).

Appendix H 219

-~
.... ". ...

EBCDlCf

~~ .. p);~ Symbol Ca!'d Code ANS.CHtt. Meoning Remarks ,: .

CO 192 SP {2-0 2-0 . blank .; Output only.
C1 193 A 12-1 .4-1 . CI-C9, 01-09, E2-E9 comprise the
C2 194 8 12-2 ,(-2 uppercase alphabet.
C3 195 C 12-3 4-3
C4 196 0 12-4 4-4
C5 197 E 12-5 4-5
C6 198 F 12-6 4-6
C7 199 G 12-7 4-7
C8 200 H 12-8 4-8
C9 201 J 12-9 4-9
CA 202 12-0-9-8-2 CA through CF are unassigned.
CB 203 12-0-9-8-3
CC 204 12-0-9-8-4
CD 205 12-0-9-8-5
CE 206 12-0-9-8-6
CF 207 12-0-9-8-7

DO 208 11-0 DO is unassigned.
01 209 J 11-1 4-10

'.

02 210 K 11-2 4-11
03 211 L 11-3 4-12
04 212 M 11-4 4-13 .,.
05 213 N 11-5 4-14
06 214 0 11-6 4-15 \

07 215 P 11-7 5-0
08 .216 Q 11-8 5-1 ..
09 .217 R 11-9 5-2 ··l
OA' '218 12-11-9-8-2 OA thro~ .Of are. unass~:f
DB 219 12-11-9-8 .. 3
DC 220

\
12-11-9-8-4

,

DO 221 12-11-9-8-5 c

I
DE 222 I 12-11-9-8-6
OF 223 12-11-9-8-7

EO 224 - 0-8-2 2-13 minus Output cn1y~.~1 is unassfgneCl.
E1 225 11-0-9-1
E2 226 S.

..•
0-2 5-3

E3 227 1. 0-3 5-4
E4 228 U 0-4 5-5
E5 229 V' 0-5 5-6
E6 230 W 0-6 5-7
E7 231 X 0-7 5-8
E8 232 Y 0-8 ..-:-,.; . 5-9

'.
E9 233 Z 0-9 . t-io
EA 234 11-0-9:8':2

I .. ~
EA th~oush EF are unassigned.

EB- 235 11-0-9-8-3
EC 236 11-0-9-8-4
ED 237 11-0-9-8-5
EE 238 11-0-9-8-6
EF 239 11-0-9-8-7

FO 240 0 0 3-0
Fl 241 1 1 3-1
F2 242 2 2 3-2
F3 243 3 3 3-3
F4 244 4 4 3-4
F5 245 5 5 3-5
F6 246 6 6 3-6
F7 247 7 7 3-7
F8 248 8 8 3-8
F9 249 9 9 3-9
FA 250 X 12-11-0-9-8-2 multiply FA through FF are APl characters
FB 251 12-11-0-9-8-3 divide for 2741 APl use only.
Fe 252 - 12-11-0-9-8-4 right arrow
Fo 253 - 12-11-0-9-8-5 left arrow
FE 254 12-11-0-9-8-6 FE is not assigned.
FF 255 DEL 12-11-0-9-8-7 delete Special - neither graphic nor

control symbol.

tHexade~imal and decimal notation.

ttOecimol notation (column-row).

220 Appendix H

Table H-4. ANSCll Control-Cha~act~r Translation Tobie
. ,

Input .. '. ~ .. Output '
, , ,

I
TTY Prog. Receives ' T ransrhitted

ANSCIl Key Echoed (EBCDIC) , Process EBCDIC ,(ANSCll)

NUL (00) pcs None None None NUL" (00) Noth i ng (end of
output message)

SOH (Ol)t AC
SOH SOH None SOH (Ol) SOH

STX (02)t BC
STX STX None STX (02) STX

ETX (03)t C
C

ETX ETX None ETX (03) ETX

EaT (04l DC EaT EaT Input Complete. EaT .(04) EOT

ENQ (~5)t EC ENQ ENQ (09) None HT (OS) Space(s) if tab
, .. (

simulation on, or
~. HT (09) if not.

'"

ACK' (06)t F
C

ACK ACK None ACK(06) ACK
...

BEL (()7) ~,' GC
B~~ BEL None BEL (07) BEL

,: ~~l
',~ , '

BS (08) '. ''\, BS . BS None BS (08) BS

HT (09) Ie I ,. Space to tab stop Spaces to tab stop, None ENQ (09) ENQ(05)
if tabsimulation or one space, or tab
9n~.<,or 1 space if (05)depending on' "

'~~~'f~ space i~sertion mode. < . -
~ ,.'

" ' ..
LF/NL (OA) NL • : ,;.C1t :and.LF IF (15)' Input Complete. NAK (OA)

,
NAK (15) , '

," ~ .• , t .• ..
VT (OB) KC VT VT None VT (Oil) VT

FF (OC) L
C

None FF Page Heo.': (lnd, I~F (OC) Page Header
"I~pu.t :Complete. :

CR (00) CR CR and LF CR (00) Input Complete. CR (00) CR and LF (OA)

SO (OE) NC
SO SO None SO (OE) SO

51 (OF) OC SI 51 None 51 (OF) 51

OLE (10)t pc OLE· OLE None OLE (10) OLE

DCl (11) QC DCl None Paper Tape On. DCl (11) DCl

DC2 (12) R
C

DC2 DC2 None DC2 (12) DC2

DC3 (13) SC DC3 None Paper Tape Off. DC3 (13) DC3

DC4 (14)t T
C

DC4 DC4 None DC4 (14) DC4

NAK (15)t UC
NAK NAK (OA) None LF/NL (15) CR and LF (OA)

tThese characters are communication control chara'cters reserved for use by hardware. Any other use of them risks in-
compatibility with future hardware developments and is done 50 by the user at his own risk

Appendix H221

, '

. Table H-4. ANSCU Control ... Choro'cJer Tran~Iotion Table' (cont.)

~'
ANSCII ,. Key' Echoed

ETB (17/

CAN (18)

EM (19)

SUB (1A)

~,SC (1 B)

FS (1ci

GS (10)

RS (1E)

US (1 F)

} (70)

-(7E)

DEL (7F)

SYN

ETB

Back-arrow
and CR/LF

Back-arrow
and CR/LF

SUB

K
CS

None
ESC
PREFIX

\
fS

os

, RS

ALT- } or N~ne
MODE

ESC -or None
(7015)

Rubout \

~.­
"

Prog. R~c~ives
(EBCDIC;)

SYN

ETB

None

None

SUB

None

FS

GS

RS

US

} or None

-or None

None

Process

None

None

Cancel input
or output
message.

EBCDIC

SYN
t

(16)

ETB (17)

CAN (18)

Monitor Escape/ EM (19)
Control to TEL

Input Complete SUB (1A)

Initiate escape ESC (1 B)
sequence mode.

Input Complete FS (1C)

Inpu.t Complete GS (10)

Input Comp I,ete RS (I E)

input Complete us' (1 F)

} if model 37; as t(B3)
" ESC if model 33,
35, or 7015.

-if model 37; as -, (5F)
ESC if model 33,
35, or 7015

Rubout last DEl (FF)
character.

Output

Transmitted
(ANSCII)

SYN (not trans­
mitted for last
character in
user's buffer).

ETB

CAN

EM

II (A3)

l.~. ~~.'

'" ESC

,,'RS

US

}(7D)

--(7E)

None

A" ANSell upper and lower case alphabetics are translated on input into the
corresponding EBCDIC graphics as shown in Tables C-l and C-2. All special
graphics map as shown, allowing for Table C-l, Note 2, and the exceptions
above for model 33 and 35. Lower case alphabetics map into corresponding
EBCDIC upper case if the ESC U mode is set. Upper case alphabetics map
into corresponding EBCDIC lower case if ESC) is set.

Alphabetic and symbol output trans­
lation is also as shown in Tables C-.1
and C-2; for Models 33 and 35, and
7015terminals, however, lowercase
alphabetics are automatically trans­
lated to upper case.

tThese characters are communication control characters reserved for use by hardware. Any other use of them risks in­
compatibi Iity with future hardware developments and is done so by the user at his own risk.

222 Appendi x H

"Table H-4. Subst,itutiOri!; for Nonexist,ent Choroct~rs on 2,74\ KeybQards
" . "

EBCDIC APl ,Selectric fBCD
Cha(,acter Keyboard Ke'ybocird ' ~,cybo01'd

,

> > , (upper' case) >

< < ! (upper case) <

" 1 ' ¢~ ,.
" ~.~

I I 0
(degree) I

--, - ±
, --,

,
I

, ,
%' P % %

t c I ~

@ a @ @

II
" V II ..

'.

I":~ 0 I I

& n & &
~

;"'$ J "~ , '
'U $

,~ \Y',! t.
.~t-

, ~'i -, "

Appendix H 223

APP,erJDIj{ t·SPI1(t~·fILtFEATURE

The SPILL-FILL feature allow$ so'ling of symbiont files.
For proper control, the programs written to use this f~oture
~ust follow these rules:

0) FPT's must be used for CALl,8 exactly as shown on the
following poges.

b) The user's SRl at the time of CAL must contoi.n the
code thot agrees with the desired function and FPT.

c) AO privilege is required for SPILling and Filling of
output fi les in save mode.

d) 80 privilege is required for SPILling JeL files in
save mode.

e) CO privilege is required for Filling JCl files and for
deleting files. .

f} No concurrent OIJtput files ore eligible for SPilling or
FflU'ng.

'",. ""

g)' ,..:No running JOBS can be SPILL«I/Fllled.

At this time, no log of SfllLed files is mointoi~ed by the
system. If, after SPI Lli n9 a Jet nle, the.c lose operation
specifies SAVE rother·thon DELETE, on .entry is mode on·
the operator's console that shows the job ID as retubmitted.,
If FILling 0 JeL file at another job step" a n,ew SYSID ";
assigned and'returned in the user's SR1. Thh ptes~rves the':.t:
uniqueness of BATCH 10$0 It is the SPllLlflll u.s.r's~;':
resp:msibility to keep other users informed d ony such

changes. '. " "

If, SP'lLing in the SAVE mode and tf)e !,~ber o'JNFll~(~\
OUTFllE slots drops too low, the'lo,Iser is qlJ-.ed.lor RaBAT.:;
to make more slots available. The user should bOQwor'o of '
the number of fi Ie slots oval'able before starting. Moni tor
cell Bl:IFS contains the n~mber of available INFILE sloh
and Sl:OFS contains the number of available OUTFllE
slots.

Wtte:1 Filling a JCL file and a slot is taken, the user's SRl
is updoted with the value of BL:IFS. When FILling an out­
put f; Ie and 0 slot is taken, the user's SRl is updated with
Bl:OFS. These values are not converted to EBCDIC. If
insufficient slots ex;st, the user's SRl is set to -1, and the
requested FILL is denied.

On return, the user's SRl contains the following:

SRl

~-~-i· F F F IF

~ 8l:IF~B_L_:O ____ FS ____ ~ __ ~_N_E_W_S~Y_S_ID ____ ~
o 16 31

F

Example of how to SPILL:

START

SPllL1

SPILl2

SPIlL3

SPlll4

SPILLS

SPILl6

REF M:XX,M:ZZ
EQU S

User Initialization Code

M:OPEN

EQU
LI ,SR1
EQU
CAU ,8
8CS,8
M:OPEN

M:WRITE

M:READ

lW,Rl
SlS,Rl

M:YY ,(••••

S
C'SP'
S
SPlllFPT
BAD
M:XX,(DEVICE, .q'),
(FPARAM,FPT2),; ..
(ABN , NOFllE) ,'l ~ •.••
M:VY, (8UF~FPT2),

. (SIZE,'S6),(••••.•
M:XX,(BUf ,BUF~2),
(SI ZE, 512) , (AB N , EOF) ,.
(...
M:XX-+4
-17

, "

SPIll7 , M:WRITE M:YV ,(!UF ,8UF2),
(SIZE,'*i),(••• ~ ••
SPIlL6

EOF

' .. :t-

'* '

'*

NOFllE

'*
'*

BAD
'*
•
'*

SPlllFPT
OPTCON
REaPl
OPTP2
OPTP3
REOP ..
OPTP12
REQP13
OPTP21

User Terminotion Code .
Checking < SR,l .
and lossing Whah
Been Done

User Cod. to Handle that Function

User Cod. to Handl. Bad FPT, Insufficient
symbiont space. .
Also If PrivIlege Wrong for RIoque:ted Foatur.

DATA
DATA
DATA
DATA
DATA
DATA
DATA
GEN / 16,8,C
DATA

X'lAOOOOOO'
'X' FO 180S.I'r\O'
C'C2'
C'qq'
X'n'
X'2'
C'form'
X'o' ,X"p' ,X'hp'
X'id'

I::;IFT! 'Hi-,j Tel EUl=-

THE SAMPLE PROGPA~

'J.

FPT2
BUF~
:It r
r
r. .,..

'.
'*
'*
'*
'*
'*

'*
•
'*
....
.....

BOUND 8
RES 14
RES 512
OPTCON needs to be odiusted for proper.
presence bits
REQ P 1 , REO P4, REQ P13 must be there or
CAll,S wi II be errored.

REQ Pl, OPTP2, OPTP3, REQ Pt3, OPTP21 can
be indirect.

Any other parameter presence bi ts will resu It
in an error return from the CAll ,S.

qq

n

can be used to selectively SPILL files
for specific devices.

'"
. 'fILL6

EOF

'"
'"
•

FPT3
•
'"
INBUF

BAD

User Code to Check fo~. Multi,ple Fi.lc,

M:WRHE M:XX,(BUF~IN8UF),
JSIZE,*1),(. ~' ••

8 , FillS'
M:CLOSE M:YY',.(.•.
1I ,SR1 C'FI'
M:LDEV 'C2' ,ASAVE
user code to check SRl
and perform required functions
based on its contents; i.e., new SYSID '•

RES 14
FPT not optional, all parameters must remain
as they were from SPILL operations.
RES 512

EQU $
user code

"", .•
is the origin of thfJ fj Ie being
SPilLed; 0 indicates a local fi Ie, any
other number indicates a remote file
and n is the work station number.

.; '. ~ . ..,

'*
'*
'*
...

'*
*
'*
*
'*
'* ..
'*
'*

."

...

Ip
hp

id
m

is the low priority range 00-22
is the high priority range 00-22

OO-OF ore input JCL fi les waiting in
bat.ch queue to run priority O-F.

11-20 output ~i.~es priority O-F

21 m~ssage files

22 NeTl confrol files.
is the SYSID af the file. ".; .
4 means temo~e fi Ie; from RBBA 11
, ~ 14_se~~~).

,1 means,~&mPC?~~~lmove file
from RBBA fs)ai S2 while
making .C6py ~f it (""\t~) •

form If form name needs to be specifi·ed.·'

Example of how t~Fllli that is, return what was SPilLed:

REF M:XX,M:YV

START Eau $

'* User Initialization Code for Record Keeping

FllLl
FIlL2

flLl3

FILL4
FIlL5

M:OPEN
M:READ

II ,SRl
CAll,S
BCS,S
M:OPEN
M:READ

LW,l
SlS,l

* fa :::,EL..FC:T ! _LC·,

M:XX,(••••••
M:XX I (aUF, FPT3),
(SIZE,56),(•••
C'FI'
FPT3
BAD
M:YV ,(DEVICE,'C2')
M:X X, (BUF ,I NBUF) I
(SIZE,512), (ABN ,EOF),
(...
M:XX + ..
-17

:r.'Ei.::rCE ~JFr'iE I·.r ~E=. t·j'-::, !_f- ~ i_ r'O •

M:LDEV (SPILL) FPT Options

Word 1

I~~~I:I,I, 1,I,I.U .. ~JJJJ.J"l.bUJJJJJJJJJJ
- stream-id (Pl) .

fa "I" ,:. .:, "I" " JL" ,: ;'I;~;:~~.-;,d" "I" " " J

~ption WSN (P3)

option SPill (P4)

II . I : :! 21
o 1 2 ,1. 5 , 7(. t 101111211 14 151617 I' 1,1:10 21222124252.2712829 JO 11

option FORM (P12)

tion PRIO (P13)

I F':E"! S ~ U::::- E THE r"·PY·i E R I ,= DE 1.-' :r C E r·.! U \ .. ~ :F E R

90 3 (::,:,., I) 1 ,'... ,;,;", '31 "',) • IF [1F'TF2= U 'i T;-lE~'~ NC',1 DEi . .' I CE SELECT I 01"''\ 224. l' Appendix I
IS .D'.]j"'.jE (.S'y·r'i:E:IOriT I="ILES FQt:;' Hi_.L rEi/ICES FiPE :r.:'Ur'~FED).

option SYSID. (P21).

M:lDEY (Fill) FPT - As FPARAMs

word 0

word 1

word 3 (P2)

word 4 (P3) \

I' I . : I': .:'. '1. :~~ I
~o~i~2~J~I'~5-.,-,rh'r7'~IO~i~dhl~2~iJrrrI4~i~'~16~1'~I~.'f~'I~M~inf~2~1'lJrl~2'~'~j~2~.1v~I~2.rH~~~JI

i
i

word 5 (P4)

224.2 Appendix I

i
.",

word 6 (P8)

word 7 (P9)

word 12 (P15) I :
6i2jl~J.'i

... R_~ed.. ... I
,6 ",.i il " i3 16 l' Ii 1,!26 }, U liiz4 is 20 211z8 29 Xi 31

word 13 (P2J)

90 31 13&-21

Note: For each entry in this index, the number of the most significant ROse is listed first ~ Any pages, thereaft,er are I isted in
numeri ca I sequence.

* command, ANlZ, 46
7 command, DRSP, 110
I command, ANLZ, 46
560 cluster/unit matrix, 156
560 Remote Assist Station, 175,23
2741 terminal, substitutions for nonexistent characters, 223

A
A Programming Language, 8
active interrvpt, 126
ALL~om~a'~d, ANLZ, 43
.An~iyze (see ANLZ)
'A~lZ, :i2, to; 23

batch mode, 42
"C'omn:lahd summary, 59,58

ANLZ, :~ommands, 42
*, 46 _.

1,46" .
ALL, 43
BF, 47
CLOSE, .48
COMPARE, 46
DELTA, 47
DISPLAY, 43
DUMP, 48
END, 49
HELP, 48
INPUT, 43
IS, 48
LINE FEED, 46
loc, 43
loc =value, 46-
loc 1, loc2, 46
lP, 47
MAP, 46
MONITOR, 46
NODELTA, 47
PRINT, 47
ROWS, 47
RUN, 43
SEARCH, 47
SMASK, 47
SPY, 48
SYMBOl.S,48
SYMBOl/,48
UC,47
UNMAP,46

ANlZ, ghost mode, 42
ANlZ, messages, 58
ANLZ, on-line mode, 42
ANLZ, output, 49
ANS COBOL (see COBOL)
ANS labeled tope, xi

ANsell, 216,214,221
AP,6
APL, 8
application processors, 11
armed interrupt, 126
Ass'embly Program (see AP)
automatic recovery, 23

B

BASIC, 6
Batch (processor), 11
batch job, xi
batch processing, 1
BF command, AN LZ, 47
binary input, xi
booting, 24,37

from disk, 40
bootstrap I/O error recovery, 40
bootstrap operations (see booting)

c
CCI, 99,4
character setsl 214
CIRe, 12
cleared tnterrupt, liS
CLIS coinmanq, ELLA, '68 '
CLOSE command, ,ANlZ, 48
cluster/unit matrix, '156
COBOL, 7
COBOL On- Line Debugger, 10
codes and correspondences, 214
command processor programming, 101
command processors, 3
command summaries, ANlZ, 59,58

DRSP, 113,110
ELLA, 91,90
reconfiguration and partitioning, 29,24

command syntax notation, x
commands, control, xi
COMPARE command, ANLZ, ~
compressed language, 213
concatenation, xi
conditional patch control commands, 35
conflicting reference, xi
Control (processor), 4
control codes, 214
Control Command Interpreter, 94,4
control commands, xi
control message, xi
cooperative, xi

Index 225

Not(For eoc,hentry;ln-this inqe~, the,r~mber.pf.·the mo~t significant page is listed first. An}' pages thereafter are listed in
- \. 'numeH~a+s~quence. ..

CP-Voperati/19 'system, :3
crash analysi~ (set; A,N L.Z)

o
Data Control Block, 96, ~i
DCB, 96,xi

diagnostic, 122, 115, 120
DDCB, 122, 115, 120.1
DEFCOM, 10
DELETE command, DRSP, 109

GENMD, 34
Delta, 9
DEL TA command, ANLZ, 47
Delto format patches, 24
DEY command, ELLA, 84
DEYDMP, 5
device designation codes, 156
device names, 156
Device Save/Restore processor, 5
device type codes, 156
diognostic DCB, 122, 115
diagnostics (see on-line peripheral diagnostic facilities)

. disbbled interrupt, 126
disarmed interrupt,_ 126
DISP c.ommand~ ELLA, 81
DISPL command, ElLA, 87
DISPLAY command,

ANlZ,A3
PPS,14S~.

DRSP, 106/1'1 .
DRSP, commo nd "Symmary, 113, 110
DRSP, commands, ;

?, 110
DELETE, 109
END, 110
ENTER, 106
LIST, 109
LISTAll, 109
REPLACE, 109

DRSP, error messages, 111, 110
DRSP, limitations and restrictions, 110
DUMP command, ANLZ, 48
Dynomic Replacement of Shared Processors (see DRSP)
DYNRESDF command, PPS, 146

E

EASY, 4
EBCDIC, 215,214
Edit (processor), 10
EDMS, 11
ElLA, 65, 11,22
ELLA, command summary, 91,90
ELLA, commands,

(LIS, 68
DEV, 84

226 Index

DISP, 81
DSPL, 87
END, 82
MOD, 84
RSET, 82
SET, 65
SlIS, 77
SUM, 81
TIME, 83
TYPE, 84

ELLA,
error log entry headings, 70
error log entry types, 77
input/output assignments, 65
input/output characteristics, 67
interrupting execution, 68
messages, 90
predefined tasks, 87
RB:FLAGS structure, 75
starting execution, 65

enabled interrupt, 126
END command, AN LZ, 49

DRSP, 110
ELLA, 82
PPS, 147

:ENO command (boot-time), 29
ENTER command, DR~r/:{~_~
ERR:FIL, 65,22 : ';
ERRFIlE file, 178,65
ERRFJlE file formots,el78
~d granule releO~~, ~l88
configuration' record, 187
device error, '·184 .
duplicate entries; 187
e~ueue tabr~ overflow, 196
en-log recor~ I ength error, 182
file inconsistency error, 186
hardware errors, 192
I/O a~tivity count, 192
illegal entry type, 183
incorrect time, 183
instruction exception, 194
lost entry indicator, 187
memory fault interrupt, 183
memory parity secondary record, 195
MFI primary record, 194
operator message, 192
partitioned resource, 196
PFI primary record, 194
power on, 187
processor fault interrupt, 183
read error, 182
remote process i ng error, 188
returned resource, 196
secondary records for disk pack, RAD, and tape, 185
Sigma 6/7 memory parity secondary record, 195
SIO failure, 183
software-detected symbiont inconsistencies, 186
system identification, 187
system startup, 185

·9031 138-2(9",,"

Note: For ecch entry in this index, the number of the most significant page islisted.first; Any F99~s thereofr~r· . .:)re listed in.',
numerical sequence.

. time Ollt, 184
time stomp, 188 .
unexpected interrupt, 184
watchdog timer, 193
Xerox 560 memory parity secondary record, 195
Xerox 560 secondary record for poll information, 195

ERRMSG file, 63
error detection and recovery I. 22,23
error log file (see ERRFJLE)
Error Log listing program (see ELLA)
error log,

reading, 92
writif19,92.

error message file, 63
error messages (see messages)
error record terminology, 178
executi,on control processors, 9

. Extended Data Management System, 11
Extended FORTRAN IV,S
external reference, xi

F

FDP, 9 '. . .
file maintenance processQ~4.·23·
files,

extension, 101, xi
identification, 98,.;
shared, 101

FILL (processor), 4 .
Fix (processor), 4
fixed monitor locations, 44
FLAG, 7
FORTRAN, 5
FORTRAN Debug Package, 9
FORTRAN libraries, 98, 14
FORTRAN Load and Go, 7
FPT, xi
FREE command, PPS, 145
FRES, 5
FSAVE, 5
function parameter table, xi

G

GAC, 5
:G ENDCB command, 34
General Purpose Discrete Simulator, 12
GENMD,

commands,
DElETE, 34
GENMD, 34
LIST, 34

error messages, 36,35
patches, 35

GENMD command, GENMD, 34

GET comMand .. PPS, 145
gho$t job, xi
ghost io~, init'ic:tin9~ 92
globalsyrnbol, xi
:GO command (boot-time), 27
GO file, xi
GPDS, 12
Granule ACcolJnting Cleanup processor, 5
granule, xi

H

hardware-error diagnostic CALs, 91
initiate ghost job, 92
read error log, 92
write error log, 92

HELP command, ANLZ,48

I/O scheduling, 18
leS, 126·
initia~ization and start-up routines, .24
INPUT command, ANlZ, 43
interrupt connection and control services, rec,a'-:-time, 126
i'nterrupt. control ~Iock, 1~~ -
interrupt label, 126. 'Y'

lOP desigootior,cocJes, 15{>
IS command, ANLZ, ~8

J

JIl, 95,xi
iob step, xi

K

key, xi
key-in, xi

l

Label, 5
language processors, 5, xi
libraries, 104

FORTRAN, 98, 14
public, 104,xii
system, xiii

-Index 227

No:e: For eochcntry::in thjsinde~,:th'e nurnber:of th~~st'si9'~~fi~anf,'po~,e is listed first. Any pages thereafter are listed in
'.' ~l:me,,;~at;equenc~. '

I ibrary'"!o'od' module, xi
LINE FEED cornmand~ANLZ,' 46
li nk (processor), 9
linking loader, xi
LIS T command,

DRSP, 109
GENMD, 34

list formats (transaction processing), 152
LISTALl command, D2SP, 109
load (processor), 9
load mop, xi
lood module, xi
lac command, ANlZ, 43
loc ~= value command, ANLZ, 46
loc 1, loc2 command, ANLZ, 46
log-on connection, 94
logical device, xi
logical device stream, xi
LOGON/LOGOFF, 3
lP command, ANlZ, 47
lYNX (processor), 9

M
'''M~BlIST, 117
M:CHKINT, 139
M:ClOCK, 132 "
M:COC, 143
M:CONNECT; 127
M:DCLOSE, ,U7
M:DDC~, 115' .
M:DISCONNEtT~ 128
M:DMOD' '.)20
M:DMODX; 120,
M:DOPEN, 116
M:EXCP, 140
M:EXU, 136
M:FPP, 137
M:GDG, 138
M:GETID, 149
M:GJOB, 137
M:GJOBCON, 127
M:GPP, 137
M:HOlD, 131
M:INHIBIT,129
M:INTCON, 129
M:INTRTN, 130
M:INTSTAT, 131
M:IOEX, 134
M:LOCK, 119
M:IAAP, 120, 137
M:/.AASTER, 136
M:NEWQ, 140
M:QFI, 130
M:QUE, 142
M:OUEUE, 149
M:RDG, 138
M:RUE, 138
M:SIO, 119

228 Index

M:STARTlO, 134
M:STOPIO, 132
Manage, 12
MAP command, ANlZ, 46
master system tape, 24,25
memory control, 96
memory layout, 20
memory management, 14
messages,

ANlZ, 58
DRSP, 111, 11 0
ELLA, 90
GENMD, 36,35
on-line peripheral diagnostics, 114
PASSO, 41
reconfiguration and partitioning, 32,31

Meta-Symbol, 6
MOD command, ELLA, 84
monitor, 13,xii
MONITOR command, ANlZ, 46
monitor DEFs (for real-time), 147 .
monitor dump analysis progrdm (see ANtZ}~
MOS command, EllA" 88

J,

:l'4dPELT.A command, ANlZ;·~.r

Q
obiect languagel 195,xii
oblect module, xii
ori-line job, xii
on-line peripheral diagnostic facilities, 114,22

abnormal codes and messages, 121, 120
DOCS, 122, 115, 120
M:BLIST, 117
M:DCLOSE, 117
M:DDCB, 115
M:DMOD#, 120
M:DOPEN, 116
M:tOCK, 119
M:MAP, 120, 137
M:SIO, 119
PSECT directive, 114
restrictions, 114

operational label, 155,xii
output (see messages)
overlay loader, xii
overlay program, xii
overlay restrictions, shared processors, 96

p

page allocation for real-time, 143
:PART comma"ld, boot-time, 29

9031 138-2(9)

Not~ For each entry in this index, the number of H~e m()~t ~i.,gnifkant page is 1 Isrcd first.A,~Y' pcge$, the:reafter ,are listed in
numerical sequence.

portitioning, resources, 27,29
PASSO, 41 :
PASSO, error messages, 41

/patch, xii
patch control commands, conditional, 35
patch deck comment cards, 37 '
patch deck structure, 24
patch deck symbol table, 26
patch file creation, 37
patches, Delta format, 24
patchi ng operat ions, 24
PCl, 10
Peripheral Conversion langucge, 10'
peripheral device (see de~ice)
peripheral diagnostic facilities (see on-Hne'peripheral

'diagnostic facilities)
physiccd device, xii

,ph'ys,ic~1 page allocation for real-time, 143
. Physl~al Page Steoler (see PPS)

PPS,)44
PPS> 'c~m~~nds,

DISPtA-Y" 145
DYNt{ESDF, .Ji9.
END, 147
FREE, 145
GET,' 145
RESDF, 146

preventive maintenO~(:~!
PRINT command, ANlZ~ ·47
procedures, .,

M:BLIST, 117
M:CHKINT, 139
M:CLOCK, 132
M:COC, 143
M:CONNECT, 127
M:DClOSE, 117
M:DDCB, 115
M:DISCONNECT, 128
M:DMOD#, 120
M:DOPEN, 116
M:EXCP, 140
M:EXU, 136
M:FPP, 137
M:GDG, 138
M:GETID, 149
M:GJOB, 137
M:GJOBCON, 127
M:GPP, 137
M:HOLD, 131
M:INHIBIT, 129
M:INTCON, 129
M:INTRTN, 130
M:INTSTAT, 131
M:l0EX, 134
M:LOCK, 119
M:MAP, 120, 137
M:MASTER, 136
M:NEWQ, 140,
M:QFI, 130
M:QUE; 142

M:QUEUEi 149
M:RDG, .138'
M:RUE 1 138
M:SIO, ,119
M:SLAVE,l36
M:STARTlO, 134
M:STOPI0 1 132
real-time, 126

processor management, 19
processot privileges, 93
processors,

application, 11
command, 3
execution control, 9
language, 5, xi
service, 10
shared processor facilities, 106
system management, 4
user, 13

program product, xii
prompt character, xii
protective mode, xii
PS~CT directive, 114, 137
public library, 104, xii
public programs, 93

RA TES, 4
R8:FLAG" 189 ,
read error log, 91
real-time f~cilities~ 126,2

clock service,' 132
devid~ preemption services, 132
direct I/o services, 134

, ay~mic'physical page allocation, 143
interrupt 'connection and control services, 126
lock in core service, 131
miscellaneous services, 137

real-time libraries, 106, 104
reconfiguration and partitioning commands, 27

:END, 29
:GO, 27
:PART, 29
:REMOVE, 28
:SAVE, 28
:TYPE, 28

reconfiguration and partitioning commands summary,
reconfigurotion and partitioning messages, 32,31
recovery, 22,23
reentrant, xii
relative allocation, xii
relocatable object module (ROM), xii
Remote Assist Station, 175,22
remote diagnostic assistance, 175,22
remote processing, 2, xiii
:REMOVE command (boot-time), 28
REPLACE command, DRSP, 109

27,24

Index 229

. l-Jote: For each entry in this index, the number of the most significant pogeis"isfed firr.t. Any pages thereafter are listed in
numerical sequence'.

- Repo~fProgr6m Gen.erator, 8
RESDF cpmmond, PPS, 146
RESDF memary (Al, 147
resident program, xii .
response time, xii
ROM, xii
ROWS command, ANLZ, 47
RPG, 8
RSET command, ELLA, 82
RUN command, ANLZ, 43

s
:SAVE command (boot-time), 28
scheduler, xii
scheduler inputs, 15
scheduler operation, 16
scheduler output, 16
scheduler status queues, 17
scheduling, 14
screech codes (see software check codes)
SEARCH command, ANLZ, 47
sfcOndory storage, xi i

;, "mi-protective mode, xii
serv ice processors I 10
SET co~mand/.ElLA, 65
shored file use, 101
shored processor:, xii'
shored processor fdci IHies, 93
shored pr:oces;or maintenance, 106
shored processo~ programm i ng, 94
shored progra~, 93 .
Show proce'ssor ,11,· .
Simulation language;' B
Sl-l, a
SUS command I ELLA, 77
SMASK command, ANlZ, 47
software check codes, 157
Sort IMerge, 11
sou~ce language, xii
special shored processor I xii
speci fj c a flocation, xii
SPill-Fill, 224
SPY command, ANLZ, 48
standard object language, 197
start-up I 24
static core module, xiii
STATS, 5
status queues, 17
streom-id, xiii
SUM command, ELLA, 81
.Summary (processor), 5
Super (processor), 4
swap hardware organization, 18
swap-in, swap-out queues, 18
symbiont, xiii
Symbol Control Processor, 10
symbol-code correspondences, 214
symbolic input, xiii

230 Index

symbolic 'nome, xiii
SYMBOLS command, ANlZ, 48
SYMBOL/command, ANLZ, 48
symbols, graphic, 214
SYMCON, 10
SYSCON, 5
SYSG EN, 10, xiii
SYSTEM DIAG, 115
system error log file (see ERRFllE)
system generation, lO,xiii
system integrity, 20
system library, xiH
system loading, 24
system management processors, 4
system programming foci lities, 2
System Queue Manager, 148
system register, xiii
SYSTEM RTPROCS, 126
SYSTEM SIG7, 115
SYSTEM SIG9, 115
system start-up and initiofization,,~
system tape format, 24, 25

T
tope, master system, 24(,25
task control block (TCer; xiii
TEL, :.. .
TEL scan, 98
Terminal Executive language, 4
termi"91 I/O, 99
TIME command, ELLA, 83'
time-shoring, 1
transaction processing, 2
transaction processing foci I ities, 148

list formats, 152
M:GETID, 149
M:QUEUE FPTs, 150
M:QUEUE procedure format, 149
M:QUEUE procedure output, 153
System Queue Manager, 148

TYPE command, El LA, 84
:TYPE command (boot-time), 28

u
• UC command, ANLZ, 47

UNMAP command, ANlZ, 46
unsatisfied reference, xiii
user processors, 13
user status queues, 17

,90 31 138-2(9).

~ For each entry in this index, the number of the most significont P09~ is Usted.fjrst. : Any pages thereafter are listed in
numerical sequence.

v
virtual memory, special processors, 44
VOLlNIT,5

w
waiting interrupt, 126
write error log, 92

x

Xerox 560 cluster/unit matrix, 15~
Xerox 560 Remote Assist Station, 175,23
.Xerox standard compressed language, 213
Xerox standard object language, 195
Xerox standard-symbols, codes, and

correspondences, 214

Index 231

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088.0
	088.1
	088.2
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120.0
	120.1
	120.2
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132.0
	132.1
	132.2
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174.1
	174.2
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200.0
	200.1
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224.0
	224.1
	224.2
	225
	226
	227
	228
	229
	230
	231

